斜带石斑鱼TLR3 基因的克隆及其在刺激隐核虫感染时的表达分析
MOLECULAR CLONING AND CHARACTERIZATION OF A TLR3 FROM EPINEPHELUS COIOIDES INFECTED WITH CRYPTOCARYON IRRITANS
-
摘要: TLR3(Toll like receptor 3)是Toll 样受体家族的重要成员, 通过识别病原相关分子模式, 诱导宿主天然免疫应答。研究从斜带石斑鱼(Epinephelus coioides)中克隆得到TLR3 cDNA 序列, 全长为2937 bp, 包括107bp 的5′非编码区、100 bp 的3′非编码区和编码909 个氨基酸的2730 bp 的开放阅读框。TLR3 全长氨基酸序列包含1 个信号肽、18 个富含亮氨酸的重复序列(Leucine-rich Repeat LRR)、1 个跨膜结构域和1 个胞内TIR结构域(IL-R1 homologous region)。同源比对显示, 斜带石斑鱼TLR3 与其他已报道硬骨鱼类的TLR3 具有较高的同源性(52%—67%)。组织表达分析显示, TLR3 在健康斜带石斑鱼的组织中具有较广的表达分布, 其中在前脑、体肾和脾脏中表达量较高。刺激隐核虫(Cryptocaryon irritans)感染斜带石斑鱼后: 在皮肤中TLR3的表达量呈现先降低后升高的趋势, 从感染后第7 天开始上调, 并在第10 天达到高峰; 而在脾脏中,TLR3的表达量在感染6h 时就显著上调并达到峰值。结果表明斜带石斑鱼TLR3 在抗刺激隐核虫的免疫应答过程中可能发挥重要作用。Abstract: Toll-like receptor (TLR), one family of type Ⅰ trans-membrane protein, is a kind of well-studied pattern recognition receptors (PRRs) recognizing pathogen-association molecular patterns (PAMPs). Mammalian TLR3 is best-known for its recognition of pathogen dsRNA and triggering various innate immune responses against virus infection. In contrast to mammalian TLR3, piscine TLR3 can detect not only virus but also bacterial PAMPs. However, whether piscine TLR3 also involved in host anti-parasite immunity is still poorly understood. In the present study, we first cloned an Epinephelus coioides TLR3 (EcTLR3) cDNA sequence by homology cloning and RACE technique. The full length of EcTLR3 was 2937 bp including a 5′-terminal untranslated region (UTR) of 107 bp, a 3′-terminal untranslated region (UTR) of 100 bp and an open reading frame (ORF) of 2730 bp encoding a polypeptide of 909 amino acid residues. The putative isoelectric point (pI) and molecular weight (Mw) of EcTLR3 was 8.27 and 102.68 kD, respectively. The TLR family motifs, such as leucine-rich repeat (LRR) domains and Toll/ interleukin-1 receptor (TIR) domain were also conserved in EcTLR3, with 18 LRR domains and one TIR domain which were connected by one trans-membrane domain. The multiple sequence alignment demonstrated that the full length EcTLR3 amino acid sequence shared high percentage of identities with other teleost (52%—67%), and a somewhat higher sequence identity with the TIR domains (from 55% to 72%), showing that the TIR domain was more highly conserved than that of other domains during TLR3 evolution. To better understand the evolutionary relationship of EcTLR3, a phylogenetic tree was constructed using reported TLR3 protein sequence. The tree indicated that EcTLR3 was branched into the same cluster as that of other teleost TLR3, and showed a highly correlated evolutionary relationship with pufferfish TLR3. To determine the tissues expression pattern of EcTLR3, we examined EcTLR3 expression in healthy grouper by semi-quantitative RT-PCR. The results showed that the EcTLR3 was broadly expressed in all tested tissues, while the expression levels differed noticeably among the tissues, with strong expression in the spleen, trunk kidney and prosencephalon, which imply that EcTLR3 may play an important role in host innate immune response. To identify whether EcTLR3 involved in host anti- Cryptocaryon irritans immune responses, we detected the expression change of EcTLR3 in the skin and spleen at different time points (6h, 1d, 2d, 3d, 5d, 7d, 10d and 14d) post parasite infection by real-time quantitative PCR. The result showed that in the skin, the expression level of EcTLR3 was significantly down-regulated at the early time points (from day 1 to 5), while was up-regulated from day 7 and reached the peak at day 10 post the primary infection. However, in the spleen, the expression level of EcTLR3 was immediately up-regulated and reached the peak at 6h post the parasite infection. The significant up-regulation of TLR3 expression was also observed at day 3 and 5 in the spleen post the primary infection. This result suggested that EcTLR3 may also play an important role in the host defense against C. irritans infection.
-
Keywords:
- Epinephelus coioides /
- Cryptocaryon irritans /
- TLR3 /
- Clone /
- Expression analysis
-
-
[1] Magnadottir B. Innate immunity of fish (overview) [J]. Fish & Shellfish Immunology, 2006, 20(2): 137—151
[2] Medzhitov R, Janeway C Jr. The Toll receptor family and microbial recognition [J]. Trends in Microbiology, 2000, 8(10): 452—456
[3] Akira S, Takeda K, Kaisho T. Toll-like receptors: critical proteins linking innate and acquired immunity [J]. Nature Immunology, 2001, 2(8): 675—680
[4] Alexopoulou L, Holt A C, Medzhitov R, et al. Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3 [J]. Nature, 2001, 413(6857): 732—738
[5] Schnare M, Barton G M, Holt A C, et al. Toll-like receptors control activation of adaptive immune responses [J]. Nature Immunology, 2001, 2(10): 947—950
[6] Meijer A H, Gabby Krens S F, Medina Rodriguez I A, et al. Expression analysis of the Toll-like receptor and TIR domain adaptor families of zebrafish [J]. Molecular Immunology, 2004, 40(11): 773-783
[7] Oshiumi H, Tsujita T, Shida K, et al. Prediction of the prototype of the human Toll-like receptor gene family from the pufferfish, Fugu rubripes, genome [J]. Immunogenetics, 2003, 54(11): 791—800
[8] Bilodeau A L, Waldbieser G C. Activation of TLR3 and TLR5 in channel exposed to virulent Edwardsiella ictaluri[J]. Developmental and Comparative Immunology, 2005, 29(8): 713—721
[9] Rodriguez M F, Wiens G D, Purcell M K, et al. Characterization of Toll-like receptor 3 gene in rainbow trout (Oncorhynchus mykiss) [J]. Immunogenetics, 2005, 57(7): 510— 519
[10] Su J G, Zhu Z Y, Wang Y P, et al. Toll-like receptor 3 regulates Mx expression in rare minnow Gobiocypris rarus after viral infection [J]. Immunogenetics, 2008, 60(3-4): 195—205
[11] Zhang Y B, Jiang J, Chen Y D, et al. The innate immune response to grass carp hemorrhagic virus (GCHV) in cultured Carassius auratus blastulae (CAB) cells [J]. Developmental and Comparative Immunology, 2007, 31(3): 232— 243
[12] Yang C, Su J. Molecular identification and expression analysis of Toll-like receptor 3 in common carp Cyprinus carpio[J]. Journal of Fish Biology, 2010, 76(8): 1926—1939
[13] Su J G, Jang S H, Yang C R, et al. Genomic organization and expression analysis of Toll-like receptor 3 in grass carp (Ctenopharyngodon idella) [J]. Fish & Shellfish Immunology, 2009, 27(3): 433—439
[14] Su J G, Zhu Z Y, Wang Y P. Up-regulating expressions of Toll-like receptor 3 and Mx gene in gills by Grass carp reovirus in rare minnow, Gobiocypris rarus [J]. Acta Hydrobiologica Sinica, 2008, 32(5): 728—733 [苏建国, 朱作言, 汪亚平. 草鱼呼肠孤病毒上调稀有鲫腮中TLR3 和Mx 基因的表达. 水生生物学报, 2008, 32(5): 728—733]
[15] Matsuo A, Oshiumi H, Tsujita T, et al. Teleost TLR22 recognizes RNA duplex to induce IFN and protect cells from birnaviruses [J]. The Journal of Immunology, 2008, 181(5): 3474—3485
[16] Phelan P E, Mellon M T. Functional characterization of full-length TLR3, IRAK-4, and TRAF6 in zebrafish (Danio rerio) [J]. Molecular Immunology, 2005, 42(9): 1057—1071
[17] Baoprasertkul P, Peatman E, Somridhivej B, et al. Toll-like receptor 3 and TICAM genes in catfish: species-specific expression profiles following infection with Edwardsiella ictaluri[J]. Immunogenetics, 2006, 58(10): 817—830
[18] Colorni A, Burgess P. Cryptocaryon irritans Brown 1951, the cause of ‘white spot disease’ in marine fish: an update [J]. Aquarium Science and Conservation, 1997, 1: 217—238
[19] Wang F H, Xie M Q, Li A X. A novel protein isolated from the serum of rabbitfish (Siganus oramin) is lethal to Cryptocaryon irritans [J]. Fish & Shellfish Immunology, 2010, 29(1): 32—41
[20] Dan X M, Li A X, Lin X L, et al. A standardized method to propagate Cryptocaryon irritans on a susceptible host pompano Trachinotus ovatus [J]. Aquaculture, 2006, 258: 127— 133
[21] Gay N J, Gangloff M. Structure and function of Toll receptors and their ligands [J]. Annual Review of Biochmistry, 2007, 76: 141—165
[22] Bell J K, Botos I, Hall P R, et al. The molecular structure of the Toll-like receptor 3 ligand-binding domain [J]. Proceedings of National Academy Science of USA, 2005, 102(31): 10976—10980
[23] Yamamoto M, Sato S, Hemmi H, et al. Role of adaptor TRIF in the MyD88-independent toll-like receptor signaling pathway[J]. Science, 2003, 301(5633): 640—643
[24] O'Neill L A, Bowie A G. The family of five: TIR-domaincontaining adaptors in Toll-like receptor signaling [J]. Nature Reviews Immunology, 2007, 7(5): 353—364
[25] Baoprasertkul P, Peatman E, Somridhivej B, et al. Toll-like receptor 3 and TICAM genes in catfish: species-specific expression profiles following infection with Edwardsiella ictaluri[J]. Immunogenetics, 2006, 58(10): 817—830
[26] Joshi A D, Schaller M A, Lukacs N W, et al. TLR3 modulates immunopathology during a Schistosoma mansoni egg-driven Th2 response in the lung [J]. European Journal of Immunology, 2008, 38(12): 3436—3449
[27] Vanhoutte F, Breuilh L, Fontaine J, et al. Toll-like receptor (TLR)2 and TLR3 sensing is required for dendritic cell activation, but dispensable to control Schistosoma mansoni infection and pathology [J]. Microbes and Infection, 2007, 9(14—15): 1606—1613
[28] Visintin A, Mazzoni A, Spitzer J H, et al. Regulation of Toll-like receptors in human monocytes and dendritic cells[J]. Journal of Immunology, 2001, 166(1): 249—255
[29] Ribes S, Adam N, Ebert S, et al. The viral TLR3 agonist poly (I:C) stimulates phagocytosis and intracellular killing of Escherichia coli by microglial cells [J]. Neuroscience Letters, 2010, 482(1): 17—20
[30] Breckpot K, Escors D, Arce F, et al. HIV-1 lentiviral vector immunogenicity is mediated by Toll-like receptor 3 (TLR3) and TLR7 [J]. Journal of Virology, 2010, 84(11): 5627— 5636
-
期刊类型引用(7)
1. 孙同振,黄进强,吴深基,赵璐,潘玉财,雷明荃. 虹鳟TANK基因的克隆及其在传染性造血器官坏死病毒(IHNV)感染下的表达分析. 农业生物技术学报. 2022(11): 2174-2186 . 百度学术
2. 杜贾贾,江飚,唐嘉嘉,李安兴. 斜带石斑鱼L-氨基酸氧化酶基因克隆及表达分析. 水生生物学报. 2020(02): 303-309 . 本站查看
3. 何乐,翟少伟,冯建军,江兴龙,肖益群,郭松林. 日本鳗鲡嗜水气单胞菌的分离鉴定与免疫相关基因变化的研究. 集美大学学报(自然科学版). 2019(04): 249-257 . 百度学术
4. 樊海平,林煜,钟全福. 硝唑尼特对大黄鱼幼鱼的急性毒性试验. 福建农业科技. 2015(12): 8-10 . 百度学术
5. 梁利国,陈凯,谢骏. Toll样受体及其对水生动物疾病调控作用的研究进展. 江苏农业科学. 2015(05): 12-15 . 百度学术
6. 李晓萌,戴伟,方珍珍,邢克智,王庆奎,陈成勋. 3种非特异性免疫相关基因在点带石斑鱼组织中的mRNA表达分析. 天津农学院学报. 2015(01): 1-5 . 百度学术
7. 尹飞,龚颀杨,施兆鸿,孙鹏,彭士明,高权新,但学明,李安兴. 刺激隐核虫感染对褐菖鲉的胁迫及鱼体的免疫应答. 水生生物学报. 2014(04): 681-688 . 本站查看
其他类型引用(6)
计量
- 文章访问数: 1362
- HTML全文浏览量: 0
- PDF下载量: 783
- 被引次数: 13