人工试验湖泊浮游藻类群落的生态学研究

夏爽, 张琪, 刘国祥, 胡征宇

夏爽, 张琪, 刘国祥, 胡征宇. 人工试验湖泊浮游藻类群落的生态学研究[J]. 水生生物学报, 2013, 37(4): 640-647. DOI: 10.7541/2013.75
引用本文: 夏爽, 张琪, 刘国祥, 胡征宇. 人工试验湖泊浮游藻类群落的生态学研究[J]. 水生生物学报, 2013, 37(4): 640-647. DOI: 10.7541/2013.75
XIA Shuang, ZHANG Qi, LIU Guo-Xiang, HU Zheng-Yu. Ecological INFLUENCES OF phytoplankton community IN an experimental man-made lake[J]. ACTA HYDROBIOLOGICA SINICA, 2013, 37(4): 640-647. DOI: 10.7541/2013.75
Citation: XIA Shuang, ZHANG Qi, LIU Guo-Xiang, HU Zheng-Yu. Ecological INFLUENCES OF phytoplankton community IN an experimental man-made lake[J]. ACTA HYDROBIOLOGICA SINICA, 2013, 37(4): 640-647. DOI: 10.7541/2013.75

人工试验湖泊浮游藻类群落的生态学研究

基金项目: 

国家973项目(2007CB109205)

国家自然科学基金项目(30970501)资助

Ecological INFLUENCES OF phytoplankton community IN an experimental man-made lake

  • 摘要: 为了对转基因(CAgcGH)鲤的生态风险评估提供参考资料, 于2002年构建人工试验湖泊。研究分析了该人工湖泊浮游藻类群落的结构特征、季节动态、年际变化及其与水体各环境因子的关系。2006年至2010年间, 每季度采样, 共鉴定出浮游藻类7门47属66种, 其中绿藻种类最多。双向指示种分析(TWINSPAN)和除趋势对应分析(DCA)结果显示采样点数据可分为春夏秋冬4组, 说明该群落季节性明显。冬季群落结构简单, 多样性最低, 主要由小环藻(Cyclotella sp.)和分歧锥囊藻(Dinobryon divergens)组成; 春季, 小环藻、针杆藻(Synedra sp.)、颗粒直链藻(Melosira granulata)等几种硅藻占优势; 夏季群落结构复杂, 占优势的是银灰平裂藻(Merismopedia glauca)和螺旋鞘丝藻(Lyngbya contarta), 多样性最高; 秋季没有明显占优势的种类。5年间, 群落细胞密度上升了33.1%, 平均值为(1.430.75)106 cells/L; 硅藻在群落中所占比例从48.2%下降至16.2%, 而蓝藻从9.3%上升至42.2%。典范对应分析(CCA)的结果显示对浮游藻类影响最大的环境因子是温度和溶氧, 总氮浓度和总磷浓度的影响也是不可忽视的, 而pH在试验中对浮游藻类群落结构的影响有限。不同藻类在CCA排序图上有不同的分布格局, 一些硅藻主要分布在中低温采样点, 蓝藻集中分布在高温的采样点, 鼓藻主要出现在高透明度和高总磷浓度的采样点, 金藻主要分布在高溶氧浓度和低温的采样点。
    Abstract: To evaluate the possible ecological risks of transgenic (CAgcGH) common carp, an experimental man-made lake was set up in 2002. We investigated the phytoplankton community structure, seasonal dynamics, annual variations of phytoplankton, as well as its relationships with environmental factors. Samples of phytoplankton were collected seasonally from 2006 to 2010. Sixty-six species belonging to seven phyla and forty-seven genera were identified, among which Chlorophyta was the most. The results of two-way indicators species analysis (TWINSPAN) and detrended correspondence analysis (DCA) showed that the samples were congregated into four groups, which indicated obvious seasonal character. In winter, the community structure was simple.The biodiversity was the lowest. The community was mainly composed of Cyclotella sp. and Dinobryon divergens; in spring, several diatoms, such as Cyclotella sp., Synedra sp. and Melosira granulata became dominant species; in summer, community structure was the most complex, with the highest biodiversity, and Merismopedia glauca and Lyngbya contarta were dominant. In our five-year-experiment, the cell density rose by 33.1%, and mean annual cell density was (1.430.75) 106 cells/L; the percentage of diatoms in the phytoplankton community dropped from 48.2% to 16.2%, while the percentage of Cyanobacteria in the phytoplankton community rose from 9.3% to 42.2%. The results of canonical correlation analysis (CCA) demonstrated that the community structure was mainly influenced by temperature and dissolved oxygen. The influence of the density of total phosphorus and nitrogen was non-negligitible, and the influence of pH was small. Diatoms mainly appeared in samples from middle and low temperature sites, blue-green algae mainly appeared in samples from high temperature sites, Desmidiales mainly appeared in samples from sites with high transparency and total phosphorus, and Chrysomonadales mainly appeared in samples from sites with high dissolved oxygen and low temperature.
  • [1]

    Reynolds C S. Ecology of Plankton [M]. Cambridge:Cambridge University Press. 2006, 36

    [2]

    Arhonditsis G B, Winder M, Brett M T, et al. Patterns and mechanisms of phytoplankton variability in Lake Washington (USA) [J]. Water Research, 2004, 38:40134027

    [3]

    Shu J H, Huang W Y, Wu Y G. Studies on the classification of trophic types of China's lakes [J]. Journal of Lake Sciences, 1996, 8:193200 [舒金华, 黄文钰, 吴延根. 中国湖泊营养类型的分类研究. 湖泊科学, 1996, 8:193200]

    [4]

    Liu J K. Ecological Studies on Lake Donghu [M]. Beijing:Academic Press. 1990, 405 [刘健康. 东湖生态学研究(一). 北京:科学出版社. 1990, 405]

    [5]

    Cheng X Y, Li S J. An analysis on the development processes of lake eutrophication and their characteristics of the typical lakes in the middle and lower reaches of Yangtze River [J]. Chinese Science Bulletin, 2006, 51:848855 [成小英, 李世杰. 长江中下游典型湖泊富营养化演变过程及其特征分析. 科学通报. 2006, 51:848855]

    [6]

    Zhou Q, Han S Q,Yan S H, et al. The mutual effect between phytoplankton and water hyacinth planted on a large scale in the eutrophic lake [J]. Acta Hydrobiologica Sinica, 2012, 36(4):783791 [周庆, 韩士群, 严少华, 等. 富营养化湖泊规模化种养的水葫芦与浮游藻类的相互影响. 水生生物学报, 2012, 36(4):783791]

    [7]

    Tang H J, Xie P, Liu L, et al. Temporal and spatial variation of phytoplankton structure and its relationship with environmental factors in Lake Donghu [J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2008, 47:100104 [唐汇娟, 谢平, 刘丽, 等. 武汉东湖浮游植物群落结构的时空变化与环境因子的关系. 中山大学学报(自然科学版), 2008, 47:100104]

    [8]

    Zhang T L, Li Z J, Guo Q S. Investigations on fishes and fishery of four lakes along the middle and lower basins of the Changjiang River [J]. Acta Hydrobiologia Sinica, 2008, 32(2):167177 [张堂林, 李钟杰, 郭青松. 长江中下游四个湖泊鱼类与渔业研究. 水生生物学报, 2008, 32(2):167177]

    [9]

    Kuang Q J, Ma P M, Hu Z Y, et al. Study on the evaluation and treatment of lake eutrophication by means of algae biology [J]. Journal of Safety and Environment, 2005, 5:8791 [况琪军, 马沛明, 胡征宇, 等. 湖泊富营养化的藻类生物学评价与治理研究进展. 安全与环境学报, 2005, 5:87 91]

    [10]

    Wang M C, Liu X Q, Zhang J H. Evaluate method and classification standard on lake eutrophication [J]. Environmental Monitoring in China, 2002, 18:4749 [王明翠, 刘雪芹, 张建辉. 湖泊富营养化评价方法及分级标准. 中国环境监测, 2002, 18:4749]

    [11]

    Hu H J, Wei Y X. The Freshwater Algae of China Systematics, Taxomony and Ecology [M]. Beijing:Academic Press. 2006, 23903 [胡鸿钧, 魏印心. 中国淡水藻类系统、分类及生态. 北京:科学出版社. 2006, 23903]

    [12]

    Wehr J D, Sheath R G. Freshwater Algae of North America, Ecology and Classification [M]. New York:Academic Press. 2002, 715755

    [13]

    Robert E L. Phycology [M]. Cambridge:Cambridge University Press. 2008, 47498

    [14]

    Zhang Z S, Huang X F. The Methods of Freshwater Plankton Research [M]. Beijing:Science Press. 1991, 336 [章宗涉, 黄祥飞. 淡水浮游生物研究方法. 北京:科学出版社. 1991, 336]

    [15]

    Ministry of Environmental Protection of the People's Republic of China. Methods for Analyze and Monitoring Water and Waste Water [M]. Beijing:China Environmental Science Press. 2002, 88284 [中国国家环境保护部. 水和废水监测分析方法. 北京:中国环境科学出版社. 2002, 88284]

    [16]

    Andersen R A. Diversity of Eukaryote algae [J]. Biodiversity and Conservation, 1992, 1:267292

    [17]

    ter Braak C J F. Canonical correspondence analysis:A new eigenvector technique for multivariate direct gradient analysis [J]. Ecology, 1986, 67:11671179

    [18]

    Hao Z Q, Guo S L, Ye J. Canonical Correspondence Analysis on Relationship of Woody Plants With Their Environments on the Northern Slope of Changbai Mountain [J]. Chinese Journal of Plant Ecology, 2003, 27:733742 [郝占庆, 郭水良, 叶吉. 长白山北坡木本植物分布与环境关系的典范对应分析. 植物生态学报, 2003, 27:733742]

    [19]

    Lei A P, Shi Z X, Wei Y X. Diversity of the phytoplankton in Donghu Lake, Wuhan [J]. Acta Hydrobiologia Sinica, 2003, 27(2):179184 [雷安平, 施之新, 魏印心. 武汉东湖浮游藻类物种多样性的研究. 水生生物学报, 2003, 27(2):179184]

    [20]

    Peng Y H, Jian Y X, Wang J B, et al. A comparative study on aquatic plant diversity in five largest lakes of Hubei province in China [J]. Acta Hydrobiologia Sinica, 2004, 28(5):464 470 [彭映辉, 简永兴, 王建波, 等. 湖北省五大湖泊水生植物多样性的比较研究. 水生生物学报, 2004, 28(5):464470]

    [21]

    Ge J W, Cai Q H, Liu J K, et al. The present situation and evaluation of plant diversity of Lake Liangzihu wetland [J]. China Environmental Science, 2003, 23:451456 [葛继稳, 蔡庆华, 刘建康, 等. 梁子湖湿地植物多样性现状与评价. 中国环境科学, 2003, 23:451456]

    [22]

    Gong L J, Zhang S P, Xiong P X, et al. Identification and comparative analysis of plankton in aquiculture lakes in summer in Wuhan city [J]. Journal of Hydroecology, 2009, 2:1014 [龚珞军, 张世萍, 熊邦喜, 等. 武汉市夏季养殖湖泊浮游生物监测及比较研究. 水生态学杂志, 2009, 2:1014]

    [23]

    Reynolds C S. Vegetation Processes in the Pelagic:a Model for Ecosystem Theory [M]. California:Ecology Institute. 1997, 371

    [24]

    Oliver R L, Ganf G G. Freshwater Blooms [A]. In:Whitton B A, Potts M (Eds.), The ecology of cyanobacteria [C]. Dordrecht:Kluwer. 2000, 149194

    [25]

    Zhou G J. Phytoplankton community variations and algal blooms control theory in theer-gorges reservoir [D] Thesis for Doctor of Science. Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan. 2009 [周广杰. 三峡水库浮游藻类群落变化及水华控制原理.博士学位论文.中国科学院水生生物研究所, 武汉. 2009]

    [26]

    Xie L Q, Xie P, Tang H J. The concentration and dynamics of sediment phosphorus in various lake regions of Lake Donghu [J]. Acta Hydrobiologia Sinica, 2001, 25(4):305310 [谢丽强, 谢平, 唐汇娟. 武汉东湖不同湖区底泥总磷含量及变化的研究. 水生生物学报, 2001, 25(4):305310]

    [27] akes [J]. Journal of Lake Science, 2006, 18:199206 [黄清辉, 王磊, 王子健. 中国湖泊水域中磷形态转化及其潜在生态效应研究动态. 湖泊科学, 2006, 18:199206.

    Huang Q H, Wang L, Wang Z J. Advance in the study on phosphorus speciation, transformation and its potential ecological effects in Chinese lakes [J]. Journal of Lake Science, 2006, 18:199206 [黄清辉, 王磊, 王子健. 中国湖泊水域中磷形态转化及其潜在生态效应研究动态. 湖泊科学, 2006, 18:199206]

    [28]

    Xie P. A review on the causes of Cyanobacterial Blooms from an Evolutionary, Biogeochemical and Ecological View of Point [M]. Beijing:Science Press. 2007, 76116 [谢平. 论蓝藻水华的发生机制从生物进化、生物地球化学和生态学视点. 北京:科学出版社. 2007, 76116]

  • 期刊类型引用(5)

    1. 万为民. 配合饲料投喂量和粒径对绿盘鲍稚鲍生长和存活的影响. 渔业现代化. 2022(01): 30-37 . 百度学术
    2. 李琪,刘鉴毅,孙艳秋,邹雄,王妤,庄平,冯广朋,赵峰,黄晓荣,杨俊. 投喂策略对多纹钱蝶鱼幼鱼生长的影响. 海洋科学. 2022(03): 93-102 . 百度学术
    3. 吕云云. 不同投喂水平对皱纹盘鲍生长、体成分及消化酶活性的影响. 海洋湖沼通报. 2022(03): 16-21 . 百度学术
    4. 陈云飞,彭慧珍,刘庄鹏,胡毅,吕怡航,李昭林,张德洪. 投喂水平对黄鳝(Monopterus albus)生长、肠道消化酶活性及部分血清生理生化指标的影响. 渔业科学进展. 2017(02): 114-120 . 百度学术
    5. 段国庆,江河,胡王,凌俊,胡玉婷,潘庭双. 投喂水平对黄鳝幼鱼生长的影响. 广东农业科学. 2015(07): 105-109 . 百度学术

    其他类型引用(4)

计量
  • 文章访问数:  1477
  • HTML全文浏览量:  0
  • PDF下载量:  599
  • 被引次数: 9
出版历程
  • 收稿日期:  2012-03-05
  • 修回日期:  2013-03-16
  • 发布日期:  2013-07-24

目录

    /

    返回文章
    返回