长吻(鱼危)养殖群体与野生群体遗传多样性分析
ANALYSIS ON SEQUENCE POLYMORPHISM OF THE MITOCHONDRIAL DNA CONTROL REGION AND POPULATION GENETIC DIVERSITY OF THE CULTIVATED AND NATURAL CHINESE LONGSNOUT CATFISH (LEIOCASSIS LONGIROSTRIS)
-
摘要: 长吻(鱼危)(Leiocassis longirostris)是中国土著珍稀鱼类。近年来, 由于江河水利工程、环境污染及人类生产活动已经对江河的渔业资源造成了难以逆转的破坏, 长吻(鱼危)的渔业资源已逐渐枯竭。目前, 长吻(鱼危)在四川、广东等地实现适度规模养殖。以四川眉山、湖北石首和安徽淮南3个人工养殖长吻(鱼危)群体及4个长江野生长吻(鱼危)群体(重庆段、武汉段、安庆段和南京段)为实验材料, 利用线粒体DNA (mtDNA)控制区序列作为分子标记对135个个体的遗传结构进行了分析。结果表明, 在790 bp 的同源序列中, 长吻(鱼危) 3个养殖种群共检测到变异位点27个, 占全部序列的3.42%, 66个个体共检测到18种单倍型; 在野生群体中, 69个个体共检测到35个变异位点和36个单倍型, 长吻(鱼危)野生群体平均单倍型多样性和平均核苷酸多样性(Hd=0.9736±0.0070, Pi=0.0087±0.0015)高于长吻(鱼危)养殖群体(Hd=0.8867±0.0013, Pi=0.0056±0.0013); 群体间的遗传分化水平较低(Fst值为0.0014—0.1125)。采用邻接法(NJ法)和统计简约原理对所有单倍型进行系统发育树和统计简约网状图的构建, 结果表明: 各群体内的个体均不能分别构成独立的分支, 而是相互交叉聚在一起。分析结果表明, 长吻(鱼危)养殖群体与野生群体之间的基因交流充分, 未出现遗传分化, 但相对长吻(鱼危)野生群体, 长吻(鱼危)养殖种群多态性偏低。Abstract: The Chinese longsnout catfish is a semi-migratory fish which is commercially valuable in China. Due to overfishing, environmental pollution, and other human disturbances, the populations of this species have declined rapidly and disappeared in many river systems in the past decades. Currently, the Chinese longsnout catfish mainly inhabits the main streams of the Yangtze River and rarely found in lakes. At present, the Chinese longsnout catfish achieved appropriate scale farming in Sichuan, Guangdong and other places. However, seldom study was reported about analysis of population genetic structure using molecular markers. To protect and exploit this rare species effectively, investigations on population structures, resources and artificial reproduction have been conducted. In this study, the mitochondrial DNA control region were used to analyze genetic diversity and structure of 7 cultivated and natural populations of Chinese longsnout catfish collected from Meishan, Shishou, Huainan, Chongqing, Wuhan, Anqing and Nanjing named Meishan population, Shishou population, Huainan population, Chongqing population, Wuhan population, Anqing population and Nanjing population separately. The results showed the length of this region (D-loop) contained 790 bp nucleotides and the T, C, A and G contents were 31.5%, 25.3%, 29.1% and 14.1% respectively. Twenty-seven nucleotide sites and 18 haplotypes were found in 3 cultivated populations of Chinese longsnout catfish. Thirty-five nucleotide sites and 36 haplotypes were found in 4 natural populations of Chinese longsnout catfish. The average haplotype diversity and nucleotide diversity of cultivated populations of Chinese longsnout catfish were relatively low (Hd=0.8867±0.0013, Pi=0.0056±0.0013). The level of genetic differentiation was relatively low (0.0014—0.1125). Molecular phylogenetic tree and statistical parsimony network constructed by NJ method and statistical parsimony principles showed individuals from the same stock did not cluster together, and individuals from three different stocks nested with each other. These results suggested gene flow was sufficient between breeding populations and wild populations. They had no obviously genetic differentiation between breeding populations and wild populations. The genetic diversity of the cultivated populations of Chinese longsnout catfish was low.
-
Keywords:
- Leiocassis longirostris /
- mtDNA /
- Control region /
- Sequencing
-
-
[1] He X F, Su L D, Zhou G R, et al. Study on domestication and reproduction test of Leiocassis longirostris [J]. Freshwater Fisheries, 1985, (1): 14—17 [何学福, 苏良栋, 周贵荣, 等. 长吻(鱼危)的蓄养繁殖试验研究. 淡水渔业, 1985, (1): 14—17]
[2] Fang J Q. Collection and domestication of Leiocassis longirostris from the Yangtze River [J]. Scientific Fish Farming, 1999, (7): 19 [方建清. 长江长吻(鱼危)的收集与蓄养. 科学养鱼, 1999, (7): 19]
[3] Liu J K, He B W. The Chinese Freshwater Fisheries Science(third edition) [M]. Beijing: Science and Technology Press. 1992, 304 [刘建康, 何碧梧. 中国淡水鱼类养殖学(第三版). 北京: 科学技术出版社. 1992, 304]
[4] Gong J H. Test on cage culture wild Leiocassis longirostris in reservoir [J]. Reservoir Fisheries, 2006, 26(1): 54 [龚建辉. 水库网箱养殖野生长吻(鱼危)试验. 水利渔业, 2006, 26(1): 54]
[5] Wu Q J. Population ecology of Leiocassis longirostris (Gunther) (Pisces, Bagridae) with reference to the problem of maximum sustained yield [J]. Acta Hydrobiologica Sinica, 1975, 5(3): 387—408 [吴清江. 长吻(鱼危)种群生态学及其最大持续渔获量的研究. 水生生物学集刊, 1975, 5(3): 387—408]
[6] Xiao M S, Wan Q. The biology and culture prospect of Leiocassis longirostris in the Yangtze River [J]. Journal of Anhui Technical Teachers College, 2001, 15(3): 49—51 [肖明松, 万全. 长江长吻(鱼危)的生物学习性及其发展前景. 安徽技术师范学院学报, 2001, 15(3): 49—51]
[7] Zhang Y Y.Researches and development of Leiocassis longirostris Gunther [J]. Southwest China Journal of Agricultural Sciences, 1998, S1(11): 134—139 [张义云. 长吻(鱼危) (Leiocassis longirostris Gunther) 的研究与开发. 西南农业学报, 1998, S1(11): 134—139]
[8] Mo Y X, Wang X Q, Mo Y L. Morphological and histological observations of digestive system in Leiocassis longirostris [J]. Journal of Hunan Agricultural University (Natural Sciences), 2004, 30(3): 267—271 [莫艳秀, 王晓清, 莫永亮. 长吻(鱼危)消化系统的形态学与组织学观察. 湖南农业大学学报(自然科学版), 2004, 30(3): 267—271]
[9] Luo M, Jiang L K, Liu Y, et al. Comparative study on isoenzymes in Leiocassis longirostris [J]. Chinese Journal of Applied & Environmental Biology, 2000, 6(5): 447—451 [罗曼, 蒋立科, 刘颖, 等. 野生与养殖长吻(鱼危)血液及不同器官同工酶的比较. 应用与环境生物学报, 2000, 6(5): 447—451]
[10] Wan Q, Liu E S, Shen D L, et al. Analysis on karyotype of Leiocassis longirostris Gunther [J]. Journal of Anhui Agricultural University, 2002, 29(2): 182—184 [万全, 刘恩生, 申德林, 等. 长吻(鱼危)染色体组型分析. 安徽农业大学学报, 2002, 29(2): 182—184]
[11] Xiao M S, Yang G. Isolation and characterization of 17 microsatellite loci for the Chinese longsnout catfish Leiocassis longirostris [J]. Molecular Ecology Resources, 2009, 9(3): 1039—1041
[12] Yu Y Y, Xiao M S, Chen L, et al. Isolation and characterization of microsatellite loci in the longsnout catfish (Leiocassis longirostris) [J]. Aquaculture Research, 2009, 40(2): 246—248
[13] Bermingham E, Avise J C. Molecular zoogeography of freshwater fishes in the southeastern United States [J]. Genetics, 1986, 113(4): 939—965
[14] Grunwald C, Stabile J, Waldman J R, et al. Population genetics of shortnose sturgeon Acipenser brevirostrum based on mitochondrial DNA control region sequences [J]. Molecular Ecology, 2002, 11(10): 1885—1898
[15] Mabuchi K, Senou H, Suzuki T, et al. Discovery of an ancient lineage of Cyprinus carpio from Lake Biwa, central Japan, based on mtDNA sequence data, with reference to possible multiple origins of koi [J]. Journal of Fish Biology, 2005, 66(6): 1516—1528
[16] Kyle C J, Wilson C C. Mitochondrial DNA identification of game and harvested freshwater fish species [J]. Forensic Science International, 2007, 166(1): 68—76
[17] Teletchea F. Molecular identification methods of fish species: reassessment and possible applications [J]. Reviews in Fish Biology and Fisheries, 2009, 19: 265—293
[18] Zhang Y, Zhang E, He S P. Studies on the structure of the control region of the bagridae in China and its phylogentic significance [J]. Acta Hydrobiologica Sinica, 2003, 27(5): 463—467 [张燕, 张鹗, 何舜平. 中国鲿科鱼类线粒体DNA控制区结构及其系统发育分析. 水生生物学报, 2003, 27(5): 463—467]
[19] Thompson J D, Gibson T J, Plewniak F, et al. The Clustal X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools [J]. Nucleic Acids Research, 1997, 24: 4876—4882
[20] Kumar S, Tamura K, Nei M. Mega 3.0: Integrated software for molecular evolutionary genetics analysis and sequence alignment [J]. Briefings in Bioinformatics, 2004, 5: 150—163
[21] Rozas J, Sánchez-del Barrio J C, Messeguer X, et al. DNA polymorphism analyses by the coalescent and other methods [J]. Bioinformatics, 2003, 19: 2496—2497
[22] Excoffier L, Laval G, Schneider S. Arlequin ver 3.0. An integrated software package for population genetics data analysis [J]. Evolutionary Bioinformatics Online, 2005, 1: 47—50
[23] Clement M, Posada D, Crandall K A. TCS: a computer program to estimate gene genealogies [J]. Molecular Ecology, 2009, 9: 1657—1660
[24] Templeton A K. Crandall K A, Sing C F. A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping and DNA sequence data. III. Cladogram estimation [J]. Genetics, 1992, 132: 619—633
[25] Posada D, Crandall K A. Evaluation of methods for detecting recombination from DNA sequences: Computer simulations [J]. Proceedings of the National Academyof Sciences of the United States of America, 2001, 98: 13757—13762
[26] Slatkin M, Hudsun R R. Pairwise comparisons of mitochondrial DNA sequences in stable and exponentially growing populations [J]. Genetics, 1991, 129: 555—562
[27] Wang Z W, Zhou J F, Ye Y, et al. Genetic structure and low- genetic diversity suggesting the necessity for conservation of the Chinese longsnout catfish Leiocassis longirostris Günther (Pisces: Bagriidae) [J]. Environmental Biology of Fishes, 2006, 75: 455—463
[28] Mo Y X, Wang X Q, Mo Y L. RAPD analysis of genetic diversity of Leiocassis longirostris [J]. Journal of Jiangxi Fisheries Science, 2010, 122(2): 13—16 [莫艳秀, 王晓清, 莫永亮. 长吻(鱼危)遗传多样性的RAPD分析. 江西水产科技, 2010, 122(2): 13—16]
[29] Wang H Y, Huang W Q. Preliminary analysis on the genetic diversity in four populations of Leiocassis longirostris by using microsatellite markers [J]. Journal of Henan Agricultural Sciences, 2011, 40(2): 146—148 [王红莹, 黄文清. 应用微卫星标记分析长江流域长吻(鱼危)4 个群体的遗传多样性. 河南农业科学, 2011, 40(2): 146—148]
[30] Yang G, Xiao M S, Yu Y Y, et al. Genetic variation at mtDNA and microsatellite loci in Chinese longsnout catfish (Leiocassis longirostris) [J]. Molecular Biology Reports, 2012, 39(4): 4605—4617
[31] Avise J C. Phylogeography the History and Formation of Species [M]. Cambridge, Massachusetts London, England: Harvard University Press. 2000, 213—285
[32] Meng W, Guo Y, Hai S, et al. Genetic structure and diversity of Schizothorax biddulphi populations [J]. Acta Hydrobiologica Sinica, 2012, 36(5): 851—857 [孟玮, 郭焱, 海萨, 等. 塔里木裂腹鱼群体遗传结构及遗传多样性分析. 水生生物学报, 2012, 36(5): 851—857]
[33] Masatoshi N. Molecular Population Genetics and Evolution [M]. Beijing: Agriculture Press. 1975, 121—133 [根井正利. 分子群体遗传学与进化论. 北京: 农业出版社. 1975, 121—133]
[34] Wright S. The gentical structure of population [J]. Annals of Eugenics, 1951, 15: 323—334
[35] Wright S. Evolution in Mendelian populations [J]. Genetics, 1931, 16: 97—159
[36] Han X L, Xu J R, Li X R, et al. Analysis of genetic diversity of Elopichthys bambusa by AFLP Markers [J]. Journal of Nan jing Normal University (Natural Science Edition), 2009, 32(1): 110—114 [韩晓磊, 徐建荣, 李小蕊, 等. 鳡鱼群体遗传多样性的AFLP 分析. 南京师大学报(自然科学版), 2009, 32(1): 110—114]
[37] Yang X, Yang J F, Tang M L, et al. Intraspecific genetic polymorphisms of Siniperca Scherzeri Steindacher and molecular identification with Siniperca chuatis [J]. Acta Hydrobiologica Sinica, 2007, 31(6): 891—895 [杨星, 杨军峰, 汤明亮, 等. 斑鳜种内遗传多态性以及与翘嘴鳜的分子鉴别. 水生生物学报, 2007, 31(6): 891—895]
-
期刊类型引用(5)
1. 万为民. 配合饲料投喂量和粒径对绿盘鲍稚鲍生长和存活的影响. 渔业现代化. 2022(01): 30-37 . 百度学术
2. 李琪,刘鉴毅,孙艳秋,邹雄,王妤,庄平,冯广朋,赵峰,黄晓荣,杨俊. 投喂策略对多纹钱蝶鱼幼鱼生长的影响. 海洋科学. 2022(03): 93-102 . 百度学术
3. 吕云云. 不同投喂水平对皱纹盘鲍生长、体成分及消化酶活性的影响. 海洋湖沼通报. 2022(03): 16-21 . 百度学术
4. 陈云飞,彭慧珍,刘庄鹏,胡毅,吕怡航,李昭林,张德洪. 投喂水平对黄鳝(Monopterus albus)生长、肠道消化酶活性及部分血清生理生化指标的影响. 渔业科学进展. 2017(02): 114-120 . 百度学术
5. 段国庆,江河,胡王,凌俊,胡玉婷,潘庭双. 投喂水平对黄鳝幼鱼生长的影响. 广东农业科学. 2015(07): 105-109 . 百度学术
其他类型引用(4)
计量
- 文章访问数: 1578
- HTML全文浏览量: 3
- PDF下载量: 754
- 被引次数: 9