西北太平洋海岸带大弹涂鱼复合体的隐存种与进化历史
CRYPTIC SPECIES AND EVOLUTIONARY HISTORY OF BOLEOPHTHALMUS PECTINIROSTRIS COMPLEX ALONG THE NORTHWESTERN PACIFIC COAST
-
摘要: 大弹涂鱼Boleophthalmus pectinirostris间断分布于西太平洋海岸带东亚与马来西亚马六甲海峡,但马来西亚种群的分类地位尚存争议。研究使用线粒体ND5基因序列(718 bp)与核位点Rag1基因序列(1395 bp)对西北太平洋海岸带11个地点的45尾大弹涂鱼属鱼类进行系统发育关系重建,结果表明大弹涂鱼包括东亚与马来西亚两个单系群,两者形成姊妹群关系。GMYC分析、*BEAST物种树支持大弹涂鱼东亚谱系和马来西亚谱系是不同种。分子测定年龄分析表明大弹涂鱼东亚谱系与马来西亚谱系之间的分化时间为2.73百万年。因此,西北太平洋海岸带大弹涂鱼是复合体,包括两个物种:东亚种群是大弹涂鱼Boleophthalmus pectinirostris sensu stricto,而马来西亚种群是隐存种Boleophthalmus sp.。大弹涂鱼与隐存种之间的物种分化可能是晚上新世冰期海平面下降产生的地理隔离以及间冰期洋流对基因交流的阻碍两方面相互作用的结果。Abstract: The species range of Boleophthalmus pectinirostris sensu lato includes two disjunctive areas, i.e., East Asia and Strait of Malacca in Malaysia along the northwestern Pacific coast. However, the species status of Malaysian populations remains disputed. Mitochondrial ND5 gene (718 bp) and nuclear Rag1 gene (1395 bp) were used to reconstruct phylogenetic relationships among Boleophthalmus pectinirostris fishes by sampling 45 specimens from 11 locations in the northwestern Pacific. The results showed that Boleophthalmus pectinirostris fishes could be divided into two major monophyletic groups, i.e., East Asian lineage and Malaysian lineage, and which together formed the sister-group relationship. Species delineation using the analyses of GMYC and *Beast species tree supports that East Asian lineage and Malasian lineage of Boleophthalmus pectinirostris sensu lato should be placed into two different species. Molecular dating revealed that the divergence time between East Asian lineage and Malaysian lineage of Boleophthalmus pectinirostris sensu lato was 2.73 Ma. We concluded that Boleophthalmus pectinirostris sensu lato was a complex, including two species. The East Asian populations is Boleophthalmus pectinirostris sensu stricto, and the Malaysian populations is a cryptic species (Boleophthalmus sp.). Our findings suggested that species split between Boleophthalmus pectinirostris sensu stricto and Boleophthalmus sp. was attributed to geographical isolation during lowing sea levels of ice ages and the barrier of gene flow induced by ocean currents during interglacial period in the late Pliocene.
-
Keywords:
- Gobiidae /
- Boleophthalmus /
- Phylogeny /
- Species delineation /
- Northwestern Pacific
-
-
[1] Murdy E O. A taxonomic revision and cladistic analysis of the oxudercine gobies (Gobiidae: Oxudercinae) [J]. Records of the Australian Museum Supplement, 1989, 11: 193
[4] Ni Y. Boleophthalmus Valenciennes, 1837 [A]. In: Wu H L, Zhong J S (Eds.), Fauna Sinica, Ostichthyes, Perciformes (V), Gobioidei [C]. Beijing: Science Press. 2008, 693698 [倪勇. 大弹涂鱼属. 见: 伍汉霖, 钟俊生, 中国动物志硬骨鱼纲鲈形目(五)虾虎鱼亚目. 北京: 科学出版社. 2008, 693698]
[5] Cantor T. Catalog of Malayan fishes [J]. Journal of the Asiatic Society of Bengal, 1849, 18: 9831443
[6] Koumans F P. Gobioidea [A]. In: Weber M, de Beaufort L F (Eds.) Fishes of the Indo-Australian archipelago [C]. Leiden, EJ Brill. 1953, 1423
[7] Takita T, Agusnimar, Ali A B. Distribution and habitat requirements of oxudercine gobies (Gobiidae: Oxudercinae) along the Straits of Malacca [J]. Ichthyological Research, 1999, 46(2): 131138
[8] Polgar G, Khaironizam M Z. First record of Periophthalmus walailakae (Gobiidae: Oxudercinae) from Peninsular Malaysia [J]. Cybium, 2008, 32(4): 349351
[9] Polgar G, Crosa G. Multivariate characterisation of the habitats of seven species of Malayan mudskippers (Gobiidae: Oxudercinae) [J]. Marine Biology, 2009, 156(7): 14751486
[10] Wang L, Wang X Z, He S P. Phylogenetic relationships of seven barred species of Acrossocheilus based on sequences of the mitochondrial DNA ND4 gene, with doubt on the taxonomic status of Acrossocheilus hemispinus [J]. Acta Hydrobiologica Sinica, 2010, 34(6): 12181222
[11] Guo L, Li J, Wang Z S, et al. Phylogenetic relationships of noodle-fishes (Osmeriformes: Salangidae) based on four mitochondrial genes. [J]. Acta Hydrobiologica Sinica, 2011, 35(3): 449459
[12] Tang W X, Ishimatsu A, Fu C Z, et al. Cryptic species and historical biogeography of eel gobies (Gobioidei: Odontamblyopus) along the Northwestern Pacific coast [J]. Zoological Science, 2010, 27(1): 813
[13] Tornabene L, Chen Y J, Pezold F. Gobies are deeply divided: phylogenetic evidence from nuclear DNA (Teleostei: Gobioidei: Gobiidae). [J]. Systematics and Biodiversity, 2013, DOI: 10.1080/14772000.2013.818589
[14] Wang P X. Response of Western Pacific marginal seas to glacial cycles: paleoceanographic and sedimentological features [J]. Marine Geology, 1999, 156(1-4): 539
[15] Liu J X, Gao T X, Wu S F, et al. Pleistocene isolation in the Northwestern Pacific marginal seas and limited dispersal in a marine fish, Chelon haematocheilus (Temminck Schlegel, 1845) [J]. Molecular Ecology, 2007, 16(2): 275288
[16] Zheng Q A, Fang G H, Song Y T. Introduction to special section: dynamics and circulation of the Yellow, East and South China Seas [J]. Journal of Geophysical Research, 2006, 111(C11): C11S01
[17] Hua X, Wang W, Yin W, et al. Phylogeographical analysis of an estuarine fish, Salanx ariakensis (Osmeridae: Salanginae) in the north-western Pacific [J]. Journal of Fish Biology, 2009, 75(2): 354367
[18] Shen K N, Jamandre B W, Hsu C C, et al. Plio-Pleistocene sea level and temperature fluctuations in the northwestern Pacific promoted speciation in the globally-distributed flathead mullet Mugil cephalus [J]. BMC Evolutionary Biology, 2011, 11: 83
[19] Miya M, Nishida M. Use of mitogenomic information in Teleostean molecular phylogenetics: a tree-based exploration under the maximum-parsimony optimality criterion [J]. Molecular Phylogenetics and Evolution, 2000, 17(3): 437455
[20] Lpez J A, Chen W J, Ort G. Esociform Phylogeny [J]. Copeia, 2004, 3: 449464
[21] Thompson J D, Gibson T J, Plewniak F, et al. The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools [J]. Nucleic Acids Research, 1997, 25(24): 48764882
[22] Rozas J, Snchez-Delbarrio J C, Messeguer X, et al. DnaSP, DNA polymorphism analyses by the coalescent and other methods [J]. Bioinformatics, 2003, 19(18): 24962497
[23] Stephens M, Smith N J, Donnelly P. A new statistical method for haplotype reconstruction from population data [J]. American Journal of Human Genetics, 2001, 68(4): 978989
[24] Stephens M, Scheet P. Accounting for decay of linkage disequilibrium in haplotype inference and missing data imputation [J]. American Journal of Human Genetics, 2005, 76(3): 449462
[25] Bandelt H J, Forster P, Rhl A. Median-joining networks for inferring intraspecific phylogenies [J]. Molecular Biology and Evolution, 1999, 16(1): 3748
[26] Polzin T, Daneschmand S V. On Steiner trees and minimum spanning trees in hypergraphs [J]. Operations Research Letters, 2003, 31(1): 1220
[27] Ronquist F, Teslenko M, van der Mark P, et al. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space [J]. Systematic Biology, 2012, 61(3): 539542
[28] Stamatakis A. RAXML-VI-HPC: maximum likelihood- based phylogenetic analyses with thousands of taxa and mixed models [J]. Bioinformatics, 2006, 22(21): 26882690
[29] Posada A. jModelTest: phylogenetic model averaging [J]. Molecular Biology and Evolution, 2008, 25(7): 12531256
[30] Pons J, Barraclough T G, Gomez-Zurita J, et al. Sequence-based species delimitation for the DNA taxonomy of undescribed inserts [J]. Systematic Biology, 2006, 55(4): 595609
[31] Drummond A J, Suchard M A, Xie D, et al. Bayesian phylogenetics with BEAUti and the BEAST 1.7 [J]. Molecular Biology and Evolution, 2012, 29(8): 19691973
[35] Hey J. Isolation with migration models for more than two populations [J]. Molecular Biology and Evolution, 2010, 27(4): 905920
[36] Hey J. The divergence of Chimpanzee species and subspecies as revealed in multipopulation isolation-with- migration analysis [J]. Molecular Biology and Evolution, 2010, 27(4): 921933
[37] Tamura K, Peterson D, Peterson N, et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods [J]. Molecular Biology and Evolution, 2010, 28(10): 27312739
[38] Heled J, Drummond A J. Bayesian inference of species trees from multilocus data [J]. Molecular Biology and Evolution, 2010, 27(3): 570580
[39] Mukai T, Nakamura S, Suzuki T, et al. Mitochondrail DNA divergence in yoshinobori gobies (Rhinogobius species complex) between the Bonin Islands and the Japan-Ryukyu Archipelago [J]. Ichthyol Ogical Research, 2005, 52(4): 410413
[40] Lima D, Freitas J E P, Araujo M E, et al. Genetic detection of cryptic species in the frillfin goby Bathygobius soporator [J]. Journal of Experimental Marine Biology and Ecology, 2005, 320(2): 211223
[41] Sota T, Mukai T, Shinozaki T, et al. Genetic differentiation of the gobies Gymnogobius castaneus and G. taranetzi in the region surrounding the sea of Japan as inferred from a mitochondrial gene genealogy [J]. Zoological Science, 2005, 22(1): 8793
[42] Kon T, Yoshino T, Mukai T, et al. DNA sequences identify numerous cryptic species of the vertebrate: a lesson from the gobioid fish Schindleria [J]. Molecular Phylogenetics and Evolution, 2007, 44(1): 5362
[43] Neilson M E, Stepien C A. Evolution and phylogeography of tubenose goby genus Proterorhinus (Gobiidae: Teleostei): evidence for new cryptic species [J]. Biological Journal of the Linnean Society, 2009, 96(3): 664684
[44] de Queiroz K. Species concepts and species delimitation [J]. Systematic Biology, 2007, 56(6): 879886
[45] Wiens J J. Species delimitation: new approaches for discovering diversity [J]. Systematic Biology, 2007, 56(6): 875878
[46] Hebert P D N, Penton E H, Burns J M, et al. Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator [J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(41): 1481214817
[47] Hickerson M J, Meyer C P, Moritz C. DNA barcoding will often fail to discover new animal species over broad parameter space [J]. Systematic Biology, 2006, 55(5): 729739
[48] Lambeck K, Esat T M, Potter E K. Links between climate and sea levels for the past three million years [J]. Nature, 2002, 419(6903): 199206
[49] Gordon A L, Fine R A. Pathways of water between the Pacific and Indian oceans in the Indonesian seas [J]. Nature, 1996, 379(6561): 146149
[50] Guan B, Fang G. Winter counter-wind currents off the southeastern China coast: a review [J]. Journal of Oceanography, 2006, 62(1): 124
[51] Takegaki T. Threatened fishes of the world: Boleophthalmus pectinirotris (Linnaeus 1758) (Gobiidae) [J]. Environmental Biology of Fishes, 2008, 81(4): 373374
[52] Li L, Sun X P. The circulation in the South China Sea [A]. In: Su J L, Yuan Y L (Eds.), Hydrology of China seas [C]. Beijing: Ocean Press. 2005, 263272 [李立, 孙湘平. 南海环流. 见: 苏纪兰, 袁业立, 中国近海水文. 北京: 海洋出版社. 2005, 263272]
[53] Kojima S, Kamimura S, Kimura T, et al. Phylogenetic relationships between the tideland snails Batillaria flectosiphonata in the Ryukyu Islands and B. multiformis in the Japanese Islands [J]. Zoological Science, 2003, 20(11): 14231433
[54] Kojima S, Hayashi I, Kim D, et al. Phylogeography of an intertidal direct-developing gastropod Batillaria cumingi around the Japanese Islands [J]. Marine Ecology Progress Series, 2004, 276: 161172
[55] Liu S Y V, Kokita T, Dai C F. Population genetic structure of the neon damselfish (Pomacentrus coelestis) in the northwestern Pacific Ocean [J]. Marine Biology, 2008, 154(4): 745753
[56] Tsang L M, Chan B K K, Ma K Y, et al. Genetic differentiation, hybridization and adaptive divergence in two subspecies of the acorn barnacle Tetraclita japonica in the northwestern Pacific [J]. Molecular Ecology, 2008, 17(18): 41514163
[57] Yin W, Fu C Z, Guo L, et al. Species delimitation and historical biogeography in the genus Helice (Brachyura: Varunidae) in the Northwestern Pacific [J]. Zoological Science, 2009, 26(7): 467475
-
期刊类型引用(6)
1. 肖东东,吴增满,赵林林,宋娜. 基于ND5序列的西北太平洋海域四种弹涂鱼遗传变异比较研究. 海洋与湖沼. 2024(04): 1037-1047 . 百度学术
2. 张顺,廖健,郭昱嵩,王中铎,刘楚吾. 基于线粒体cox1基因序列的弹涂鱼类系统进化关系. 广东海洋大学学报. 2017(01): 21-27 . 百度学术
3. 曹恺,李玉火,何欢,李明月,傅萃长. 鳇亚科似鳇属鱼类的物种界定和系统发育关系. 水生生物学报. 2017(03): 617-628 . 本站查看
4. 何欢,李玉火,曹恺,李明月,傅萃长. 鮈亚科棒花鱼属鱼类的分类与系统发育关系. 水生生物学报. 2017(04): 843-852 . 本站查看
5. 李瑜,阮志强,昝启杰,石琼,游欣欣. 中国南方红树林湿地弹涂鱼遗传多样性研究. 南方农业. 2015(06): 6-10 . 百度学术
6. 邓园,宋娜,刘名,高天翔. 基于线粒体DNA Cyt b序列的双齿围沙蚕群体遗传多样性分析. 水生生物学报. 2014(03): 597-601 . 本站查看
其他类型引用(2)
计量
- 文章访问数: 3204
- HTML全文浏览量: 6
- PDF下载量: 1701
- 被引次数: 8