超声波对铜绿微囊藻超微结构和生理特性的影响
EFFECTS OF ULTRASOND WAVE ON THE ULTRASTRUCTURE AND PHYSIOLOGICAL CHARACTERISTICS OF BLUE-GREEN ALGAE (MICROCYSTIS AERUGINOSA)
-
摘要: 为了研究超声波对蓝藻细胞的影响,利用超声波(40W)处理200 mL铜绿微囊藻(Microcystis aeruginosa) 悬浮液20min,之后继续培养并于不同时间取样检测。检测悬浮藻细胞生物量发现其3d降低了97.84%;分别观察1、3、5d时沉降藻细胞超微结构变化,发现13d时细胞内脂质颗粒和藻青素颗粒增多、类囊体片层断裂、藻胆体脱落,5d时拟核区萎缩消失、细胞基础结构解体、胞质出现空洞、胞内结构颗粒降解;检测藻细胞光合放氧速率、叶绿素a (Chl.a)、超氧化物歧化酶(SOD)和过氧化氢酶(CAT)活性、膜透性以及跨膜ATP酶活性,发现光合放氧速率3d下降24.83%,Chl.a含量5d下降23.75%,超声组细胞SOD活性变化幅度比较大,但总体上活性降低,而CAT活性则表现为先增后减,活性始终大于对照组,同时胞内有机物渗出量增大,三种跨膜ATP酶活性(Na+/K+-ATPase、Mg2+-ATPase 和Ca2+-ATPase)均先升后降,并与膜透性变化相关。以上结果表明,超声波使铜绿微囊藻细胞沉降,并对其造成了胁迫,使部分藻细胞光合作用减弱,光合色素遭到损伤,细胞膜透性增大,甚至引起藻细胞程序性死亡。SOD活力的快速降低表明超声波使藻细胞内超氧离子(O2-)过量累积,从而对藻细胞造成氧化损伤,除此之外,超声波使藻细胞基础结构破坏、细胞内结构颗粒降解、细胞膜透性增大,这些都可能是致使部分铜绿微囊藻细胞死亡的重要原因。铜绿微囊藻细胞CAT以及跨膜ATP酶活性增大,表明藻细胞增强抗氧化酶活性以及离子调控和能量活动以抵御超声波的胁迫,而当胁迫随着时间减小后,细胞开始恢复生长和代谢,酶活力开始降低。Abstract: To study the effects of ultrasound wave on the blue-green algae (Microcystis aeruginosa), blue-green algae were exposed to ultrasound waves (40W) for 20 minutes, and then cultured for 1, 3, and 5 days. The results indicated that the biomass of suspended algae cells reduced by 97.84% at Day 3. From Day 1 to Day 3, lipid bodies and cyanophycin granules were accumulated, and thylakoid layers were cracked, and phycobilisomes attached to thylakoid dropped off in the cells. At Day 5, the nucleoid area gradually shrinked or disappeared, the cell infrastructure disintegrated, and voids appeared in cytoplasm and intracellular granules were degraded. Moreover, the photosynthetic oxygen evolution rate decreased by 24.83% on Day 3. Chl.a content reduced by 23.75% on Day 5. SOD activity and CAT activity were induced by ultrasound, although both of the activities diminished from Day1 to Day 5. The amount of intracellular organic exudation increased after treatment. The activities of three ATPases (Na+/K+-ATPase, Mg2+-ATPase and Ca2+-ATPase) increased firstly and then decreased, which was related to the change of membrane permeability. These results suggested that ultrasound wave may reduce algae photosynthesis, damage photosynthetic pigments and increase the membrane permeability, which can cause oxidative damage and induce death of M. aeruginosa. The dynamic CAT and ATPases activities suggested that M. aeruginosa may enhance antioxidant enzymes activity as well as ion regulation and energy activity to resist the ultrasound stress, and that the growth and metabolism of algae cells began to recover over time while the enzyme activities began to decline.
-
Keywords:
- Ultrasound /
- Microcystis aeruginosa /
- Ultrastructure /
- Photosynthesis /
- Antioxidant enzyme /
- ATPase
-
-
[1] Ahn C Y, Park M H, Joung S H, et al. Growth inhibition of cyanobacteria by ultrasonic radiation: laboratory and enclosure studies [J]. Environmental Science Technology, 2003, 37(13): 30313037
[2] Lee T J, Nakano K, Matsumara M. Ultrasonic irradiation for blue-green algae bloom control [J]. Environmental Technology, 2001, 22(4): 383390
[3] Zhang G, Zhang P, Wang B, et al. Ultrasonic frequency effects on the removal of Microcystis aeruginosa [J]. Ultrasonics Sonochemistry, 2006, 13(5): 446450
[4] Shao L L, Lu K H, Zhu J Y, et al. Study on growth inhibition of Microcystis aeruginosa by low intensity ultrasonic [J]. Ecological Science, 2012, 31(4): 413417 [邵路路, 陆开宏, 朱津永, 等. 低强度超声波抑制铜绿微囊藻生长的研究. 生态科学, 2012, 31(4): 413417]
[5] Nakano K, Lee T J, Matsumura M. In situ algal bloom control by the integration of ultrasonic radiation and jet circulation to flushing [J]. Environmental Science Technology, 2001, 35(24): 49414946
[6] Zhang G, Zhang P, Fan M. Ultrasound-enhanced coagulation for Microcystis aeruginosa removal [J]. Ultrasonics Sonochemistry, 2009, 16(3): 334338
[7] Heng L, Jun N, Wen J H, et al. Algae removal by ultrasonic irradiationcoagulation [J]. Desalination, 2009, 239(1): 191197
[8] Lu Y C, Wang G X, Li R H. Using the intergrated technique of ultrasonic and modified-clay to remove algal blooms [J]. Journal of Lake Sciences, 2010, 22(3): 421429 [陆贻超, 王国祥, 李仁辉. 超声波和改性黏土集成技术在去除蓝藻水华上的应用. 湖泊科学, 2010, 22(3): 421429]
[9] Tang J W, Wu Q Y, Hao H W, et al. Effect of 1.7 MHz ultrasound on a gas-vacuolate cyanobacterium and a gas-vacuole negative cyanobacterium [J]. Colloids and Surfaces B: Biointerfaces, 2004, 36(2): 115121
[10] Hao H, Wu M, Chen Y, et al. Cavitation mechanism in cyanobacterial growth inhibition by ultrasonic irradiation [J]. Colloids and Surfaces B: Biointerfaces, 2004, 33(3): 151156
[11] Zhang G, Zhang P, Liu H, et al. Ultrasonic damages on cyanobacterial photosynthesis [J]. Ultrasonics Sonochemistry, 2006, 13(6): 501505
[12] Xie T, Xu Z J. Ultraviolet absorption method for determination of cell membrane permeability [J]. Plant Physiology Communication, 1986, 1: 4546 [谢田, 徐中际. 测定细胞膜透性的紫外吸收法. 植物生理学通讯, 1986, 1: 4546]
[13] Hong Y, Huang J J, Hu H Y. Effects of a novel allelochemical Ethyl 2-Methyl Acetoacetate (EMA) on the ultrastructure and pigment composition of cyanobacterium Microcystis aeruginosa [J]. Bulletin of Environmental Contamination and Toxicology, 2009, 83(4): 502508
[14] Churro C, Fernandes A S, Alverca E, et al. Effects of tryptamine on growth, ultrastructure, and oxidative stress of cyanobacteria and microalgae cultures [J]. Hydrobiologia, 2010, 649(1): 195206
[15] Hu H J. The Biology of Water-blooms Blue-green Algae [M]. Beijing : Science Press. 2011, 139 [胡鸿钧. 水华蓝藻生物学. 北京: 科学出版社. 2011, 139]
[16] Wang G C, Zeng C Q. Structure and function of phycobilisomes: a review [J]. Acta Hydrobiologica Sinica, 1998, 12(4): 372377 [王广策, 曾呈奎. 藻胆体结构与功能的研究概况. 水生生物学报, 1998, 12(4): 372377]
[17] Hong Y, Hu H Y, Sakoda A, et al. Effects of allelochemical gramine on metabolic activity and ultrastructure of cyanobacterium Microcystis aeruginosa [J]. Proceedings of World Academy of Science, Engineering and Technology, 2010, 71: 825829
[18] Guo S S, Zhang J, Wu J, et al. Morphological and biochemical changes of Microcystis aeruginosa PCC7806 subjected to dark and oxygen limitation [J]. Acta Microbiologic Sinica, 2012, 52(2): 228235 [郭莉莎, 章军, 吴娟, 等. 黑暗限气条件下铜绿微囊藻细胞死亡的形态结构和生理生化变化. 微生物学报, 2012, 52(2): 228235]
[19] Zheng D S. Apoptosis and programmed cell death [J]. Zoological Research, 2000, 21(1): 1722 [郑德枢. 细胞凋亡与细胞程序性死亡. 动物学研究, 2000, 21(1): 1722]
[20] Moharikar S, D'Souza J S, Kulkarni A B, et al. Apoptotic-like cell death pathway is induced in unicellular Chlorophyte Chlamydomonas reinhardtii (Chlorophyceae) cells following UV irradiation: detection and functional analyses [J]. Journal of Phycology, 2006, 42(2): 423433
[21] Lee T J, Nakano K, Matsumura M. A new method for the rapid evaluation of gas vacuoles regeneration and viability of cyanobacteria by flow cytometry [J]. Biotechnology Letters, 2000, 22(23): 18331838
[22] Chen B, Huang J, Wang J, et al. Ultrasound effects on the antioxidative defense systems of Porphyridium cruentum [J]. Colloids and Surfaces B: Biointerfaces, 2008, 61(1): 8892
[23] Wu J, Lin L. Elicitor-like effects of low-energy ultrasound on plant (Panax ginseng) cells: induction of plant defense responses and secondary metabolite production [J]. Applied Microbiology and Biotechnology, 2002, 59(1): 5157
[24] Al-Hamdani S, Burnett C, Durrant G. Effect of low-dose ultrasonic treatment on Spirulina maxima [J]. Aquacultural Engineering, 1998, 19(1): 1728
[25] Hassan H M, Scandalios J G. Superoxide dismutases in aerobic organisms [A]. In: Alscher R G, Cumming J R (Eds.), Stress responses in plants: Adaptation and acclimation mechanisms [C]. New York: Wiley-Liss, Inc. 1990, 175199
[26] ncel I, Yurdakulol E, Kele? Y, et al. Role of antioxidant defense system and biochemical adaptation on stress tolerance of high mountain and steppe plants [J]. Acta Oecologica, 2004, 26(3): 211218
[27] Bridges S M, Salin M L. Distribution of iron-containing superoxide dismutase in vascular plants [J]. Plant Physiology, 1981, 68(2): 275278
[28] Wojtaszek P. Oxidative burst: an early plant response to pathogen infection [J]. Biochemical Journal, 1997, 322(3): 681
[29] Hong Y, Hu H Y, Xie X, et al. Responses of enzymatic antioxidants and non-enzymatic antioxidants in the cyanobacterium Microcystis aeruginosa to the allelochemical ethyl 2-methyl acetoacetate (EMA) isolated from reed (Phragmites communis) [J]. Journal of Plant Physiology, 2008, 165(12): 12641273
[30] Li M, Hu C, Zhu Q, et al. Copper and zinc induction of lipid peroxidation and effects on antioxidant enzyme activities in the microalga Pavlova viridis (Prymnesiophyceae) [J]. Chemosphere, 2006, 62(4): 565572
[31] Brennen C E. Cavitation and Bubble Dynamics [M]. Oxford University Press on Demand. 1995, 2529
[32] Tsukamoto A, Higashiyama S, Yoshida K, et al. Stable cavitation induces increased cytoplasmic calcium in L929 fibroblasts exposed to 1-MHz pulsed ultrasound [J]. Ultrasonics, 2011, 51(8): 982990
[33] Honda H, Kondo T, Zhao Q L, et al. Role of intracellular calcium ions and reactive oxygen species in apoptosis induced by ultrasound [J]. Ultrasound in Medicine Biology, 2004, 30(5): 683692
[34] Kumon R E, Aehle M, Sabens D, et al. Spatiotemporal effects of sonoporation measured by real-time calcium imaging [J]. Ultrasound in Medicine Biology, 2009, 35(3): 494506
[35] Liu Y, Yang H, Takatsuki H, et al. Effect of ultrasonic exposure on Ca2+-ATPase activity in plasma membrane from Aloe arborescens callus cells [J]. Ultrasonics Sonochemistry, 2006, 13(3): 232236
-
期刊类型引用(2)
1. 寇红岩,周萌,黄燕华,张玮岚,姚文娟,苗玉涛,闫立新,林蠡. 矿物质铜元素对水产动物生长和免疫的影响. 饲料研究. 2020(07): 155-158 . 百度学术
2. 李战福,罗金强,杨慧施,罗浩,李玉,陈拥军,罗莉. 草鱼高脂日粮磷酸二氢钙适宜添加量的研究. 水生生物学报. 2019(02): 243-251 . 本站查看
其他类型引用(4)
计量
- 文章访问数: 1536
- HTML全文浏览量: 12
- PDF下载量: 1157
- 被引次数: 6