长江刀鲚体内菌群PCR-DGGE 指纹图谱及多样性比较分析

聂志娟, 徐钢春, 杜富宽, 沈芬华, 黄敏康, 顾若波

聂志娟, 徐钢春, 杜富宽, 沈芬华, 黄敏康, 顾若波. 长江刀鲚体内菌群PCR-DGGE 指纹图谱及多样性比较分析[J]. 水生生物学报, 2015, 39(5): 1019-1026. DOI: 10.7541/2015.133
引用本文: 聂志娟, 徐钢春, 杜富宽, 沈芬华, 黄敏康, 顾若波. 长江刀鲚体内菌群PCR-DGGE 指纹图谱及多样性比较分析[J]. 水生生物学报, 2015, 39(5): 1019-1026. DOI: 10.7541/2015.133
NIE Zhi-Juan, XU Gang-Chun, DU Fu-Kuan, SHENG Fen-Hua, HUANG Min-Kang, GU Ruo-Bo. PCR-DGGE FINGERPRINTING AND DIVERSITY ANALYSIS OF THE PREDOMINANT BACTERIAL COMMUNITY IN COILIA NASUS[J]. ACTA HYDROBIOLOGICA SINICA, 2015, 39(5): 1019-1026. DOI: 10.7541/2015.133
Citation: NIE Zhi-Juan, XU Gang-Chun, DU Fu-Kuan, SHENG Fen-Hua, HUANG Min-Kang, GU Ruo-Bo. PCR-DGGE FINGERPRINTING AND DIVERSITY ANALYSIS OF THE PREDOMINANT BACTERIAL COMMUNITY IN COILIA NASUS[J]. ACTA HYDROBIOLOGICA SINICA, 2015, 39(5): 1019-1026. DOI: 10.7541/2015.133

长江刀鲚体内菌群PCR-DGGE 指纹图谱及多样性比较分析

基金项目: 

公益性行业科研专项(No.201203065)

国家科技支撑计划项目(No.2012BAD26B05)

中央级公益性科研院所基本科研业务费专项资金项目(No.2013JBFT04)

农业部东海与远洋渔业资源开发利用重点实验室开放课题资助

PCR-DGGE FINGERPRINTING AND DIVERSITY ANALYSIS OF THE PREDOMINANT BACTERIAL COMMUNITY IN COILIA NASUS

  • 摘要: 以长江刀鲚(Coilia nasus)洄游前幼鱼和洄游后成鱼为对象, 通过 PCR-DGGE 指纹技术探讨长江刀鲚菌群多样性及受洄游路径周围环境影响之后的稳定性。结果显示, PCR-DGGE 指纹谱带丰富, 共显示出70条可鉴别条带, 其中长江水体谱带数(28)高于洄游后刀鲚鳃(26)、胃(26)、肠道壁(20)、肠道内容物(21)和洄游前刀鲚鳃(21)、胃(20)、肠道壁(11)、肠道内容物(13), 洄游后刀鲚成鱼体内各对应部位菌群数显著高于洄游前刀鲚幼鱼。UPGMA 聚类和PCA 结果显示不同样品之间差异显著, 虽长江水体与洄游后刀鲚鳃、胃及肠道内容物样品在聚类图上聚为一簇, 但其菌群结构的相似度较低, 分别为43%、35%和28%。成功克隆测序其中43 条条带, 主要包含-变形菌(25.6%)、-变形菌(7%)、-变形菌(16.3%)、放线菌(25.6%)、厚菌门(9.3%)、拟杆菌(7%)、柔膜菌门(4.6%)、绿弯菌(2.3%)和未定义菌(2.3%)。以上结果表明长江刀鲚体内不同部位及其在洄游前后不同阶段, 菌群结构存在显著差异, 并受环境和宿主双层因素影响。
    Abstract: In this study we investigated the diversity and stability of the bacterial community structure in the juvenile (before the migration) and adult (after the migration) Coilia nasus using PCR-DGGE. The DGGE fingerprint bands were abundant and there were 70 detectable bands with different signal intensities. The number of bands in the water (28) was higher than that in the gill, the stomach, the intestinal wall, and the intestinal contents of Coilia nasus before and after the migration. And the numbers of the bands in the tested organs in adult Coilia nasus were higher than those in juvenile Coilia nasus. The UPGMA clustering and PCA analysis of the DGGE fingerprint showed significant differences between samples. Between the water sample and the post-migration Coilia nasus, the similarities of the bacteria structures in the fish gill, the stomach and the intestinal contents were only 43%, 35% and 28% respectively. Forty-three DGGE bands were successfully cloned including -Proteobacteria (25.6%), -Proteobacteria (7%), -Proteobacteria (16.3%), Actinobacteria (25.6%), Firmicutes (9.3%), Bacteroidetes (7%), Tenericutes (4.6%), Chloroflexi (2.3%), and some unclassified bacteria (2.3%). These results revealed that the bacterial community varied significantly at different migration stages, and in different bacterial parasitic parts of Coilia nasus. Therefore the external environment and the host should be the main factors affecting the composition of a bacterial community.
  • [1]

    Margolis L. The effect of fasting on the bacterial flora of the intestine of fish [J]. Journal of the Fisheries Board of Canada, 1953, 10(2): 6263

    [2]

    Muyzer G, Smalla K. Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology [J]. Antonie van Leeuwenhoek, 1998, 73(1): 127141

    [3]

    Muyzer G, De Waal E C, Uitterlinden A G. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reactionamplified genes coding for 16S rRNA [J]. Applied and Environmental Microbiology, 1993, 59(3): 695700

    [4]

    Mccracken V J, Simpson J M, Mackie R I,et al. Molecular ecological analysis of dietary and antibiotic-induced alterations of the mouse intestinal microbiota [J]. The Journal of Nutrition, 2001, 131(6): 18621870

    [5]

    Nakatsu C H, Torsvik V, vres L. Soil community analysis using DGGE of 16S rDNA polymerase chain reaction products [J]. Soil Science Society of America Journal, 2000, 64(4): 13821388

    [6]

    Li Z Y, He L M, Wu J, et al. Bacterial community diversity associated with four marine sponges from the South China Sea based on 16S rDNA-DGGE fingerprinting [J]. Journal of Experimental Marine Biology and Ecology, 2006, 329(1): 7585

    [7]

    Hovda M B, Sivertsvik M, Tore Lunestad B, et al. Characterisation of the dominant bacterial population in modified atmosphere packaged farmed halibut (Hippoglossus hippoglossus) based on 16S rDNA-DGGE [J]. Food Microbiology, 2007, 24(4): 362371

    [8]

    Hovda M B, Lunestad B T, Fontanillas R, et al. Molecular characterisation of the intestinal microbiota of farmed Atlantic salmon (Salmo salar L.) [J]. Aquaculture, 2007, 272(1): 581588

    [9]

    Ward N L, Steven B, Penn K, et al. Characterization of the intestinal microbiota of two Antarctic notothenioid fish species [J]. Extremophiles, 2009, 13(4): 679685

    [10]

    Spanggaard B, Huber I, Nielsen J, et al. The microflora of rainbow trout intestine: a comparison of traditional and molecular identification [J]. Aquaculture, 2000, 182(1): 115

    [11]

    Zhuang P, Wang Y K, Li S F, et al. The Fish of Yangtze Estuary [M]. Shanghai: Shanghai Scientific and Technical Publishers. 2006, 153157 [庄平, 王幼槐, 李圣法, 等. 长江口鱼类. 上海: 上海科学技术出版社. 2006, 153157]

    [12]

    Huang R S. The biological characteristics, current status and protection measures of Coilia nasus [J]. Reservoir Fisheries, 2005, 25(2): 3334 [黄仁术. 刀鲚的生物学特性及资源现状与保护对策, 水利渔业, 2005, 25(2): 3334]

    [13]

    Yu Z, Morrison M. Improved extraction of PCR-quality community DNA from digesta and fecal samples [J]. Biotechniques, 2004, 36(5): 808813

    [14]

    Ruamkuson D, Tongpim S, Ketudat-Cairns M. A model to develop biological probes from microflora to assure traceability of tilapia [J]. Food Control, 2011, 22(11): 17421747

    [15]

    Yu E M, Yu D G, Bi X M, et al. Fingertprinting and diversity of the intestinal bacterial community of crisp grass carp and Dang-zai Grass Carp (Ctenopharyngodon idellus) with PCR-DGGE [J]. Journal of Agricultural Biotechnology, 2012, 20(10): 11841191 [郁二蒙, 余德光, 毕香梅, 等. 脆化草鱼与氹仔草鱼的肠道细菌群落 PCR-DGGE 指纹图谱及多样性分析. 农业生物技术学报, 2012, 20(10): 11841191]

    [16]

    Hill T C J, Walsh K A, Harris J A, et al. Using ecological diversity measures with bacterial communities [J]. FEMS Microbiology Ecology, 2003, 43(1): 111

    [17]

    Zhou Z G, Shi P J, Yao B, et al. Comparison of the predominant bacterial community structure in the gastrointestinal wall between Lutjanus sebae and Ephippus orbis based on 16s r DNA PCR-DGGE fingerprint [J]. Acta Hydrobiologica Sinica, 2007, 31(5): 682688 [周志刚, 石鹏君, 姚斌, 等. 基于 PCR-DGGE 指纹图谱川纹笛鲷及圆白鲳消化道壁优势菌群结构比较分析. 水生生物学报, 2007, 31(5): 682688]

    [18]

    Zhao Q X. An analysis of intestinal microflora of cyprinidae[J]. Micobiology, 2001, 21(2): 1820 [赵庆新. 鲤科鱼肠道菌群分析. 微生物学杂志, 2001, 21(2): 1820]

    [19]

    Ling Z C, Yang H L, Sun Y Z, et al. Cultivablemicrobiota in the gut of juvenile grouper Epinephelus coioides and in aquaculture water [J]. Journal of Dalian Fisheries University, 2009, 24(6): 497503 [凌泽春, 杨红玲, 孙云章, 等. 斜带石斑鱼幼鱼消化道与养殖水体中可培养菌群的研究. 大连水产学院学报, 2009, 24(6): 497503]

    [20]

    Liang W, Wu S Q, Wu Z B. The application of molecular techniques to characterize the microbial communities in constructed wetland [J]. Ecology and Environmental Sciences, 2010, 4: 42 [梁威, 吴苏青, 吴振斌. 分子技术在湿地微生物群落解析中的应用. 生态环境学报, 2010, 4: 42]

    [21]

    Ma Y X, Holmstrm C, Webb J, et al. Application of denaturing gradient gel electrophoresis (DGGE) in microbial ecology [J]. Acta Ecologica Sinica, 2003, 23(8): 15611569[马悦欣, Holmstrm C, Webb J, 等. 变性梯度凝胶电泳 (DGGE) 在微生物生态学中的应用. 生态学报, 2003, 23(8): 15611569]

    [22]

    Muyzer G, De Waal E C, Uitterlinden A G. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reactionamplified genes coding for 16S rRNA [J]. Applied and Environmental Microbiology, 1993, 59(3): 695700

    [23]

    Xing D F, Ren N Q. Common problems in the analyses of microbial community by denaturing gradient gel electrophoresis (DGGE) [J]. Acta Microbiologica Sinica, 2006, 46(2): 331335 [邢德峰, 任南琪. 应用DGGE 研究微生物群落时的常见问题分析. 微生物学报, 2006, 46(2): 331335]

    [24]

    Wintzingerode F V, Gbel U B, Stackebrandt E. Determination of microbial diversity in environmental samples: pitfalls of PCR-based rRNA analysis [J]. FEMS Microbiology Reviews, 1997, 21(3): 213229

    [25]

    Ni J J, Yi Y H, Wu H H, et al. Effects generated by different band extracting methods in the analysis of DGGE profile [J]. Acta Hydrobiologica Sinica, 2012, 36(5): 10091011 [倪加加, 余育和, 吴含含, 等. 不同DGGE 谱带信息提取方法对分析结果的影响. 水生生物学报, 2012, 36(5): 10091011]

    [26]

    Cai L P. Xu H S, He L, et al. Analysis of the intestinal bacterial communities in wild Scylla serrata from different districts by PCR-DGGE [J]. Acta Agriculturae Zhejiangensis, 2011, 23(2): 278282 [蔡丽萍, 徐海圣, 何琳, 等. PCR-DGGE 技术分析不同地区野生锯缘青蟹肠道菌群多样性. 浙江农业学报, 2011, 23(2): 278282]

    [27]

    Li X, Yu Y, Feng W, et al. Host species as a strong determinant of the intestinal microbiota of fish larvae [J]. The Journal of Microbiology, 2012, 50(1): 2937

    [28]

    Wang F, Yang J F, Cheng J G, et al. Comparison of the bacterial community structure in the crab seawater cultured and the outside environment by PCR-DGGE fingerprint technique: Portunus trituberculatus and Scylla serrata [J]. Journal of Marine Sciences, 2010, 28(4): 5964 [王芳, 杨季芳, 陈吉刚, 等. 海水养殖蟹体内与外部环境中菌群结构的 PCR-DGGE 比较以三疣梭子蟹和锯缘青蟹为例. 海洋学研究, 2010, 28(4): 5964]

    [29]

    Kim D H, Brunt J, Austin B. Microbial diversity of intestinal contents and mucus in rainbow trout (Oncorhynchus mykiss)[J]. Journal of Applied Microbiology, 2007, 102(6): 16541664

    [30]

    Song Z F, Wu T X. Review on intestinal normal microflora in fish [J]. Fisheries Science, 2007, 26(8): 471474 [宋增福, 吴天星. 鱼类肠道正常菌群研究进展. 水产科学, 2007, 26(8): 471474]

    [31]

    Sugita H, Miyajima C, Deguchi Y. The vitamin B12-producing ability of the intestinal microflora of freshwater fish [J]. Aquaculture, 1991, 92: 267276

    [32]

    Rawls J F, Samuel B S, Gordon J I. Gnotobiotic zebrafish reveal evolutionarily conserved responses to the gut microbiota [J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(13): 45964601

  • 期刊类型引用(6)

    1. 杨佳雯,高敏,陈森,张浩田,吴坤,温小波,胡雄,孙育平,宁丽军. 放养密度对日本鳗鲡夏秋两季养殖水质及营养品质的影响. 水生生物学报. 2024(06): 979-990 . 本站查看
    2. 杨国祥,李丹,于雯雯,李士虎,施金金,汤建华,孟乾,汤承诺,岑永华. 基于16S rRNA高通量测序技术的长江口刀鲚肠道微生物多样性研究. 中国水产科学. 2024(09): 1105-1115 . 百度学术
    3. 薛向平,彭云鑫,方弟安,徐东坡,王小豪,任可成. 长江下游苏通江段刀鲚产卵场的初步研究. 水产学报. 2022(08): 1377-1388 . 百度学术
    4. 姜敏,张希昭,杨彦平,尹登花,代培,应聪萍,刘凯. 陈氏刺棘虫感染对洄游型刀鲚肠道微生物群落的影响. 中国水产科学. 2019(03): 577-585 . 百度学术
    5. 赵媛莉,李彤彤,刘新华,吕锦刚,章晋勇,毕永红. 东湖通道工程对沿线底泥细菌群落结构和多样性的影响. 水生生物学报. 2016(03): 565-573 . 本站查看
    6. 王琴,熊邦喜,罗国强,苏艳秋,刘海燕. 喂养不同饵料对匙吻鲟和鳙消化道微生物区系的影响(英文). 水生生物学报. 2016(04): 814-822 . 本站查看

    其他类型引用(3)

计量
  • 文章访问数:  1421
  • HTML全文浏览量:  3
  • PDF下载量:  556
  • 被引次数: 9
出版历程
  • 收稿日期:  2014-10-16
  • 修回日期:  2015-03-25
  • 发布日期:  2015-09-24

目录

    /

    返回文章
    返回