饲料中铜、钙水平对大黄鱼幼鱼生长、抗氧化酶及脂代谢酶活性的影响
EFFECTS OF DIETARY COPPER AND CALCIUM LEVELS ON GROWTH, ANTIOXIDANT ENZYME AND LIPID METABOLISM ENZYME ACTIVITIES OF JUVENILE LARGER YELLOW CROAKER LARIMICHTHYS CROCEA
-
摘要: 为研究钙对摄食高铜饲料的大黄鱼幼鱼生长性能、抗氧化酶类及脂代谢酶类活性的影响,研究采用22双因子实验设计,配制了4组实验饲料,共包含2个铜水平(4和24 mg/kg)和2个钙水平(0.5%和3%),分别命名为: -Cu-Ca、+Cu-Ca、-Cu+Ca和+Cu+Ca,饲喂大黄鱼幼鱼[(4.050.31) g]10周,每个处理组设置3个重复。结果表明,高铜组(+Cu-Ca和+Cu+Ca)实验鱼的存活率、终末体质量和增重率显著低于低铜组(-Cu-Ca和-Cu+Ca)(P0.05); 高铜组实验鱼肝脏和肌肉中的铜含量显著高于低铜组,而高钙组(-Cu+Ca和+Cu+Ca)实验鱼肌肉中的铜含量却显著低于低钙组(-Cu-Ca和+Cu-Ca)(P0.05); 高铜组实验鱼肝脏中的糖原含量显著低于低铜组(P0.05); 实验鱼肝脏中的超氧化物歧化酶、过氧化物酶、谷胱甘肽过氧化物酶、6-磷酸葡糖酸脱氢酶、异柠檬酸脱氢酶和脂肪酸合成酶活性,高铜组显著低于低铜组,而高钙组却显著高于低钙组,但硫代巴比妥酸反应物含量和脂蛋白脂肪酶活性正好相反(P0.05); 饲料中铜和钙的交互作用显著影响了实验鱼肌肉中的铜含量、硫代巴比妥酸反应物含量、6-磷酸葡糖酸脱氢酶、脂肪酸合成酶和脂蛋白脂肪酶活性(P0.05)。研究表明,钙能够缓解摄食高铜饲料对大黄鱼幼鱼造成的伤害。Abstract: To evaluate effects of dietary copper and calcium on juvenile larger yellow croaker Larimichthys crocea, four experimental diets (-Cu-Ca, +Cu-Ca, -Cu+Ca and +Cu+Ca) were formulated containing two different levels of copper (4 and 24 mg/kg) and of cadmium (0.5% and 3%) to feed juvenile large yellow croaker (4.050.31) g in tripli-cate for 10 weeks. The results indicated that the addition of Cu decreased fish survival rate, final body weight and weight gain (P0.05). As expected, the Cu diets enhanced liver and muscle Cu concentrations, Interestingly, the Ca diets diminished muscle Cu concentration (P0.05). The supplement of Cu decreased liver glycogen concentration, liver superoxide dismutase, catalase, glutathione peroxidase, 6-phosphogluconate dehydrogenase, isocitrate dehydrogenase, and fatty acid synthase activities, but it it enhanced thiobarbituric acid reactive substance content and lipoprotein lipase activity (P0.05). The interaction between Cu and Ca on muscle Cu concentration, thiobarbituric acid reac-tive substance content, 6-phosphogluconate dehydrogenase, fatty acid synthase and lipoprotein lipase activities was identified (P0.05). This study indicated that calcium supplement mitigated injuries in fish by high copper intake.
-
Keywords:
- Larger yellow croaker /
- Copper /
- Calcium /
- Antioxidant enzyme /
- Lipid metabolism enzyme
-
-
[1] Watanabe T, Kiron V, Satoh S. Trace minerals in fish nutrition [J]. Aquaculture, 1997, 151(14): 185207
[2] Wendelaar Bonga S E. The stress response in fish [J]. Physiological Reviews, 1997, 77(3): 591625
[3] Monteiro S, Rocha E, Mancera J, et al. A stereological study of copper toxicity in gills of Oreochromis niloticus [J]. Ecotoxicology and Environmental Safety, 2009, 72(1): 213223
[4] Liu X, Luo Z, Xiong B, et al. Effect of waterborne copper exposure on growth, hepatic enzymatic activities and histology in Synechogobius hasta [J]. Ecotoxicology and Environmental Safety, 2010, 73(6): 12861291
[5] Chen Q L, Luo Z, Pan Y X, et al. Differential induction of enzymes and genes involved in lipid metabolism in liver and visceral adipose tissue of juvenile yellow catfish Pelteobagrus fulvidraco exposed to copper [J]. Aquatic Toxicology, 2013, 136137: 7278
[6] Yao L X, Huang L X, Jiang Z Y, et al. Investigation of As, Cu and Zn species and concentrations in animal feeds [J]. Environment Science, 2013, 34(2): 722739 [姚丽贤, 黄连喜, 蒋宗勇, 等. 动物饲料中砷、铜和锌调查及分析. 环境科学, 2013, 34(2): 722739]
[7] Zhao Y J, Jiang M, Gao P, et al. Effects of elevated dietary copper levels on growth performance and copper, iron, zinc concentrations in muscle and hepatopancreas of grass carp Ctenopharyngodon idella [J]. Journal of Yunnan Agricultural University, 2008, 23(6): 798825 [赵宇江, 蒋明, 高攀, 等. 饲料中高水平铜对草鱼生长、肝胰脏和肌肉中铜铁锌含量的影响. 云南农业大学学报, 2008, 23(6): 798825]
[8] Lall S P. Nutrition and health of fish [A]. In: Cruz-Surez L, Ricque-Marie D, Tapia-Salazar M (Eds.), Advances en Nutricin Acuicola V [C]. Mexico: Memorias del V Simposium Internacional de Nutricin Acucola. 2000, 1323
[9] Wurts W A, Perschbacher P W. Effects of bicarbonate alkalinity and calcium on the acute toxicity of copper to juvenile channel catfish (Ictalurus punctatus) [J]. Aquaculture, 1994, 125: 7379
[10] Chen Q L, Luo Z, Zheng J L, et al. Protective effects of calcium on copper toxicity in Pelteobagrus fulvidraco: copper accumulation, enzymatic activities, histology [J]. Ecotoxicology and Environment Safety, 2012, 76(2): 126134
[11] Liu Z Y, Xie Y Q, Lin X J. Histopathological observation of pathological changes in the liver of Pseudosciaena crocea [J]. Marine Fisheries Research, 2007, 28(5): 711 [刘振勇, 谢友佺, 林小金. 大黄鱼肝脏病变组织病理学观察. 海洋水产研究, 2007, 28(5): 711]
[12] Cao J J, Miao X, Xu W, et al. Dietary copper requirements of juvenile large yellow croaker Larimichthys croceus [J]. Aquaculture, 2014, 432: 346350
[13] National Research Council (NRC). Nutrient Requirements of Fish and Shrimp [M]. Washington: National Academy Press. 2011, 378
[14] Association of Official Analytical Chemists (AOAC) [M]. Official Methods of Analysis, 17th ed, Association of Official Analytical Chemists, Arlington, VA. 2000, 1-12
[15] Wang W L, Cui X, Li C C, et al. Effect of dietary copper exposure on micronucleus of erythrocyte and accumulation in different tissues of juvenile GIFT tilapia (Oreochromis niloticus) [J]. Asian Journal of Ecotoxicolog, 2014, 9(4): 757764 [王文龙, 崔欣, 李成成, 等. 饲料中铜暴露对吉富罗非鱼幼鱼血红细胞微核和组织中铜蓄积的影响. 生态毒理学报, 2014, 9(4): 757764]
[16] McGeer J C, Szebedinszky C, McDonald D G, et al. Effects of chronic sublethal exposure to waterborne Cu, Cd or Zn in rainbow trout 1: ionoregulatory disturbance and metabolic costs [J]. Aquatic Toxicology, 2000, 50(3): 231243
[17] Shiau S Y, Ning Y C. Estimating of dietary copper requirements for juvenile tilapia, Oreochromis niloticusO. aureus [J]. Journal of Animal Science, 2003, 77(2): 287292
[18] Lin Y, Shih C, Kent M, et al. Dietary copper requirement reevaluation for juvenile grouper, Epinephelus malabaricus, with an organic copper source [J]. Aquaculture, 2010, 310(12): 173177
[19] Tan X Y, Luo Z, Liu X, et al. Dietary copper requirement of juvenile yellow catfish Pelteobagrus fulvidraco [J]. Aquaculture Nutrition, 2011, 17(2): 170176
[20] Tang Q Q, Feng L, Jiang W D, et al. Effects of dietary copper on growth, digestive, and brush border enzyme activities and antioxidant defense of hepatopancreas and intestine for young grass carp (Ctenopharyngodon idella) [J]. Biological Trace Element Research, 2013, 155(3): 370380
[21] Qian J, Wang Z, Liu G W. Advance of copper metabolism in animal body [J]. Progress in Veterinary Medicine, 2003, 24(2): 5557 [钱剑, 王哲, 刘国文. 铜在动物体内代谢的研究进展. 动物医学进展, 2003, 24(2): 5557]
[22] Tekin-Ozan S, Kir I. Seasonal variations of heavy metals in some organs of carp (Cyprinus carpio L., 1758) from Beysehir Lake (Turkey) [J]. Environmental Monitoring and Assessment, 2008, 138(13): 201206
[23] Arellano J M, Storch V, Sarasquete C. Histological changes and copper accumulation in liver and gills of the Senegalese sole, Solea senegalensis [J]. Ecotoxicology and Environment Safety, 1999, 44(1): 6272
[24] Santore R C, DiToro D M, Paquin P R, et al. Biotic li-gand model of the acute toxicity of metals. 2. Application to acute copper toxicity in freshwater fish and Daphnia [J]. Environmental Toxicology and Chemistry, 2001, 20(10): 23972402
[25] Wang Y R, Li E C, Chen L Q, et al. Effect of acute salinity stress on soluble protein, hemocyanin, haemolymph glucose and hepatopancreas glycogen of Eriocheir sinensis [J]. Acta Hydrobiologica Sinica, 2012, 36(6): 10561062 [王悦如, 李二超, 陈立侨, 等. 急性高渗胁迫对中华绒螯蟹雄蟹组织中可溶性蛋白质、血蓝蛋白、血糖与肝糖原含量的影响. 水生生物学报, 2012, 36(6): 10561062]
[26] Savary S, Trompier D, Androletti P, et al. Fatty acids induced lipotoxicity and inflammation [J]. Current Drug Metabolism, 2012, 13(10): 13581370
[27] Yao Z F, Zhang L Z, Zhuang P, et al. Effects of antioxidant enzyme in liver and acute toxicity of Cu2+ on juvenile Chinese sturgeon [J]. Journal of Fishery Sciences of China, 2010, 17(4): 731738 [姚志峰, 章龙珍, 庄平, 等. 铜对中华鲟幼鱼的急性毒性及对肝脏抗氧化酶活性的影响. 中国水产科学, 2010, 17(4) :731738]
[28] Nie Z J, Xu G C, Zhang S L, et al. Acute effects of copper on survival of fingerlings, antioxidant enzyme activities in liver and structure of gill and liver of Coilia nasus [J]. Journal of Fishery Sciences of China, 2014, 21(1): 16116 [聂志娟, 徐钢春, 张守领, 等. 铜对刀鲚幼鱼的急性毒性及对肝抗氧化酶活性与组织结构的影响. 中国水产科学, 2014, 21(1): 161168]
[29] Saera-Vila A, Calduch-Giner J A, Gomez-Requeni P, et al. Molecular characterization of gilthead sea bream (Sparus aurata) lipoprotein lipase. Transcriptional regulation by season and nutritional condition in skeletal muscle and fat storage tissues [J]. Comparative Biochemistry and Physiology B, 2005, 142(2): 224232
[30] Nanton D A, Vegusdal A, Rr A M B, et al. Muscle lipid storage pattern, composition, and adipocyte distribution in different parts of Atlantic salmon (Salmo salar) fed fish oil and vegetable oil [J]. Aquaculture, 2007, 265(14): 230243
-
期刊类型引用(2)
1. 寇红岩,周萌,黄燕华,张玮岚,姚文娟,苗玉涛,闫立新,林蠡. 矿物质铜元素对水产动物生长和免疫的影响. 饲料研究. 2020(07): 155-158 . 百度学术
2. 李战福,罗金强,杨慧施,罗浩,李玉,陈拥军,罗莉. 草鱼高脂日粮磷酸二氢钙适宜添加量的研究. 水生生物学报. 2019(02): 243-251 . 本站查看
其他类型引用(4)
计量
- 文章访问数: 1395
- HTML全文浏览量: 0
- PDF下载量: 266
- 被引次数: 6