谷氨酰胺对半滑舌鳎稚鱼非特异性免疫相关酶活力和低氧应激后HIF-1表达的影响
EFFECTS OF DIETARY GLUTAMINE ON ACTIVITIES OF NON-SPECIFIC IMMUNE RELATED ENZYMES AND HIF-1 EXPRESSION AFTER HYPOXIA OF HALF-SMOOTH TONGUE SOLE POST LARVAE
-
摘要: 为探讨饲料中谷氨酰胺对半滑舌鳎稚鱼非特异性免疫以及低氧应激后HIF-1表达的影响, 实验共设计了4种谷氨酰胺添加量分别为0、0.5%、1.0%和2.0%的等氮等脂微颗粒饲料(游离谷氨酰胺测定值分别为0.03%、0.46%、0.91% 和1.73%), 饲喂35日龄半滑舌鳎稚鱼[平均干重(10.640.86) mg]。每天饱食投喂5次,养殖周期30d, 养殖结束后进行低氧应激实验。研究结果表明, 谷氨酰胺添加量为0.5%时半滑舌鳎稚鱼鱼体溶菌酶(LZM)活力显著高于未添加组(P0.05)。饲料中不同谷氨酰胺水平对鱼体总一氧化氮合酶(TNOS)活力和诱导型一氧化氮合酶(iNOS)活力没有显著影响(P0.05)。实验克隆了半滑舌鳎低氧应激关键基因缺氧诱导因子1 (HIF-1), 得到749 bp半滑舌鳎HIF-1核心序列, 系统进化树分析表明半滑舌鳎HIF-1氨基酸序列与大部分鱼类具有较高同源性。定量PCR结果显示, 饲料中谷氨酰胺水平对低氧应激后半滑舌鳎稚鱼内脏团HIF-1表达量未产生显著影响(P0.05)。综上所述, 在饲料中添加谷氨酰胺能够显著增强半滑舌鳎稚鱼鱼体溶菌酶活力(P0.05), 提高非特异性免疫水平。Abstract: To investigate effects of dietary glutamine on activities of non-specific immune related enzymes and antihypoxia stress capacity of half-smooth tongue sole (Cynoglossus semilaevis Gnther) post larvae, four isonitrogenous and isolipidic experimental diets supplemented with 0.0%, 0.5%, 1.0% and 2.0% glutamine (with dietary free glutamine estimated to be about 0.03%, 0.46%, 0.91% and 1.73%) were formulated and fed 5 times per day to C. semilaevis post larvae (35 days after hatching, 10.640.86 mg dry weight) for 30 days before hypoxia stress test. Results revealted that the 0.5% glutamine supplemented diet significantly increased activities of lysozyme in fish whole body compared to the control group (P0.05), but different glutamine level did not impact the activities of total nitric oxide synthase and inducible nitric oxide synthase in fish whole body (P0.05). C. semilaevis HIF-1 gene were cloned and 749 bp partial cDNA sequence were obtained, which shared high identities with many other fish species. Quantitative Realtime PCR showed that glutamine supplementation did not regulate the expressions of HIF-1 in fish after hypoxia stress (P0.05). In summary, dietary glutamine could enhacne the activities of LZM and the non-specific immunity of C. semilaevis post larvae.
-
Keywords:
- Glutamine /
- Cynoglossus semilaevis /
- Post larvae /
- Non-specific immune /
- HIF1- /
- Gene cloning and expression
-
-
[1] Lacey J M, Wilmore D W. Is glutamine a conditionally essential amino acid [J]. Nutrition Reviews, 1990, 48(8): 297-309
[2] Wu G, Bazer F W, Johnson G A, et al. Triennial growth symposium: Important roles for-glutamine in swine nutrition and production [J]. Journal of Animal Science, 2011, 89(7): 2017-2030
[3] Coutinho F, Castro C, Rufino-Palomares E, et al. Dietary glutamine supplementation effects on amino acid metabolism, intestinal nutrient absorption capacity and antioxidant response of gilthead sea bream (Sparus aurata) juveniles [J]. Comparative Biochemistry and Physiology Part A: Molecular Integrative Physiology, 2015, 191: 9-17
[4] DeBerardinis R J, Cheng T. Q's next: the diverse functions of glutamine in metabolism, cell biology and cancer [J]. Oncogene, 2010, 29(3): 313-324
[5] Petry R, Cruzat V F, Heck T G, et al. Alanyl-glutamine and glutamine plus alanine supplements improve skeletal redox status in trained rats: involvement of heat shock protein pathways [J]. Life Sciences, 2014, 94(2): 130-136
[6] Magnadttir B. Innate immunity of fish (overview) [J]. Fish Shellfish Immunology, 2006, 20(2): 137-151
[7] Saurabh S, Sahoo P. Lysozyme: an important defence molecule of fish innate immune system [J]. Aquaculture Research, 2008, 39(3): 223-239
[8] Bogdan C, Nitric oxide synthase in innate and adaptive immunity: an update [J]. Trends in Immunology, 2015, 36(3): 161-178
[9] Cheng Z, Buentello A, Gatlin D M. Effects of dietary arginine and glutamine on growth performance, immune responses and intestinal structure of red drum, Sciaenops ocellatus [J]. Aquaculture, 2011, 319(1): 247-252
[10] Zhu Q, Xu Q, Xu H, et al. Dietary glutamine supplementation improves tissue antioxidant status and serum non‐specific immunity of juvenile Hybrid sturgeon (Acipenser schrenckii♀ Huso dauricus♂) [J]. Journal of Applied Ichthyology, 2011, 27(2): 715-720
[11] Hu K, Zhang J X, Feng L, et al. Effect of dietary glutamine on growth performance, non-specific immunity, expression of cytokine genes, phosphorylation of target of rapamycin (TOR), and anti-oxidative system in spleen and head kidney of Jian carp (Cyprinus carpio var. Jian) [J]. Fish Physiology and Biochemistry, 2015, 41(3): 635-649
[12] Pohlenz C, Gatlin D M. Interrelationships between fish nutrition and health [J]. Aquaculture, 2014, 431: 111-117
[13] Robertson C E, Wright P A, Kblitz L, et al. Hypoxia-inducible factor-1 mediates adaptive developmental plasticity of hypoxia tolerance in zebrafish, Danio rerio [J]. Proceedings of the Royal Society B: Biological Sciences, 2014, 281(1786): 20140637
[14] Haase V H. Regulation of erythropoiesis by hypoxia-inducible factors [J]. Blood Reviews, 2013, 27(1): 41-53
[15] Semenza G L. Hypoxia-inducible factors in physiology and medicine [J]. Cell, 2012, 148(3): 399-408
[16] Liu F. A study on protein sources screen and processing-related technics in artificial microdiet for larvae of large yellow croaker (Pseudosciaena crocea) and tongue sole (Cynoglossus semilaevis) [D]. Thesis for Doctor of Science. Ocean University of China, Qingdao. 2007 [刘峰. 大黄鱼和半滑舌鳎仔稚鱼人工微颗粒饲料蛋白源选择及其加工工艺相关研究. 博士学位论文, 中国海洋大学. 青岛. 2007]
[17] Ellis A E. Lysozyme assays [J]. Techniques in Fish Immunology, 1990, 1: 101-103
[18] Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding [J]. Analytical Biochemistry, 1976, 72(1): 248-254
[19] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2 CT method [J]. Methods, 2001, 25(4): 402-408
[20] Lin Y, Zhou X Q. Dietary glutamine supplementation improves structure and function of intestine of juvenile Jian carp (Cyprinus carpio var. Jian) [J]. Aquaculture, 2006, 256(1): 389-394
[21] Cheng Z, Gatlin D M, Buentello A. Dietary supplementation of arginine and/or glutamine influences growth performance, immune responses and intestinal morphology of hybrid striped bass (Morone chrysops Morone saxatilis) [J]. Aquaculture, 2012, 362: 39-43
[22] Wang C A, Xu Q Y, Xu H, et al. Dietary l‐alanyl‐l‐glutamine supplementation improves growth performance and physiological function of hybrid sturgeon Acipenser schrenckii♀ A. baerii♂ [J]. Journal of Applied Ichthyology, 2011, 27(2): 727-732
[23] Wang G Q, Han Y T, Lu H M, et al. Effect of Ala-Gln feeding on growth, antioxidant level, and immunity of Cyprinus carpio var. Jian [J]. Acta Hydrobiologica Sinica, 2012, 36(5): 837-842 [王桂芹, 韩宇田, 芦洪梅. 丙氨酰-谷氨酰胺投喂方式对建鲤生长, 抗氧化及免疫力的影响. 水生生物学报, 2012, 36(5), 837-842]
[24] Wei X Q, Charles I G, Smith A, et al. Altered immune responses in mice lacking inducible nitric oxide synthase [J]. Nature, 1995, 375: 408-411
[25] Jobgen W S, Fried S K, Fu W J, et al. Regulatory role for the arginine-nitric oxide pathway in metabolism of energy substrates [J]. The Journal of Nutritional Biochemistry, 2006, 17(9): 571-588
[26] Rhoads J M, Wu G. Glutamine, arginine, and leucine signaling in the intestine [J]. Amino Acids, 2009, 37(1): 111-122
[27] Buentello J A, Gatlin D M. Nitric oxide production in activated macrophages from channel catfish (Ictalurus punctatus): influence of dietary arginine and culture media [J]. Aquaculture, 1999, 179(1): 513-521
[28] Zhang K K. Studies on nutritional metabolism of several functional amino acids for juvenile turbot (Scophthalmus maximus L.) [D]. Thesis for Doctor of Science. Ocean University of China, Qingdao. 2014 [张凯凯.大菱鲆幼鱼几种功能性氨基酸营养代谢的研究. 博士学位论文, 中国海洋大学. 青岛. 2014]
[29] Da Silva Lima F, Rogero M M, Ramos M C, et al. Modulation of the nuclear factor-kappa B (NF-B) signalling pathway by glutamine in peritoneal macrophages of a murine model of protein malnutrition [J]. European Journal of Nutrition, 2013, 52(4): 1343-1351
[30] Roth E. Nonnutritive effects of glutamine [J]. The Journal of Nutrition, 2008, 138(10): 2025S-2031S
[31] Brasse‐Lagnel C, Lavoinne A, Husson A. Control of mammalian gene expression by amino acids, especially glutamine [J]. Febs Journal, 2009, 276: 1826-1844
[32] Curi R, Newsholme P, Procopio J, et al. Glutamine, gene expression, and cell function [J]. Frontiers in Bioscience, 2007, 12: 344-357
[33] Soitamo A J, Rbergh C M, Gassmann M, et al. Characterization of a hypoxia-inducible factor (HIF-1) from rainbow trout [J]. Journal of Biological Chemistry, 2001, 276(23): 19699-19705
[34] Law S H, Wu R S, Ng P K, et al. Cloning and expression analysis of two distinct HIF-alpha isoforms-gcHIF-1alpha and gcHIF-4alpha-from the hypoxia-tolerant grass carp, Ctenopharyngodon idellus [J]. BMC Molecular Biology, 2006, 7(1): 15
[35] Rahman M S, Thomas P. Molecular cloning, characterization and expression of two hypoxia-inducible factor alpha subunits, HIF-1 and HIF-2, in a hypoxia-tolerant marine teleost, Atlantic croaker (Micropogonias undulatus) [J]. Gene, 2007, 396(2): 273-282
[36] Rojas D A, Perez-Munizaga D A, Centanin L, et al. Cloning of hif-1 and hif-2 and mRNA expression pattern during development in zebrafish [J]. Gene Expression Patterns, 2007, 7(3): 339-345
[37] Shen R J, Jiang X Y, Pu J W, et al. HIF-1 and -2 genes in a hypoxia-sensitive teleost species Megalobrama amblycephala: cDNA cloning, expression and different responses to hypoxia [J]. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 2010, 157(3): 273-280
[38] Terova G, Rimoldi S, Cor S, et al. Acute and chronic hypoxia affects HIF-1 mRNA levels in sea bass (Dicentrarchus labrax) [J]. Aquaculture, 2008, 279(1): 150-159
[39] Chen N, Chen L P, Zhang J, et al. Molecular characterization and expression analysis of three hypoxia-inducible factor alpha subunits, HIF-1/2/3 of the hypoxia-sensitive freshwater species, Chinese sucker [J]. Gene, 2012, 498(1): 81-90
[40] Wenger R H, Kvietikova I, Rolfs A, et al. Hypoxia-inducible factor-1 alpha is regulated at the post-mRNA level [J]. Kidney International, 1997, 51(2): 560-563
[41] Ke Q, Costa M. Hypoxia-inducible factor-1 (HIF-1) [J]. Molecular Pharmacology, 2006, 70(5): 1469-1480 heat shock protein pathways[J]. Life Sciences, 2014, 94(2):130-136
-
期刊类型引用(2)
1. 寇红岩,周萌,黄燕华,张玮岚,姚文娟,苗玉涛,闫立新,林蠡. 矿物质铜元素对水产动物生长和免疫的影响. 饲料研究. 2020(07): 155-158 . 百度学术
2. 李战福,罗金强,杨慧施,罗浩,李玉,陈拥军,罗莉. 草鱼高脂日粮磷酸二氢钙适宜添加量的研究. 水生生物学报. 2019(02): 243-251 . 本站查看
其他类型引用(4)
计量
- 文章访问数:
- HTML全文浏览量: 0
- PDF下载量:
- 被引次数: 6