RESTORATION OF FLESH FATTY ACID COMPOSITION IN DARKBARBEL CATFISH (PELTEOBAGRUS VACHELLI) USING A FINISHING FISH OIL DIET

SHAO Ting, QIN Chuan-Jie, YUAN Deng-Yue, WEN Zheng-Yong, LI Hua-Tao

SHAO Ting, QIN Chuan-Jie, YUAN Deng-Yue, WEN Zheng-Yong, LI Hua-Tao. RESTORATION OF FLESH FATTY ACID COMPOSITION IN DARKBARBEL CATFISH (PELTEOBAGRUS VACHELLI) USING A FINISHING FISH OIL DIET[J]. ACTA HYDROBIOLOGICA SINICA, 2017, 41(1): 139-145. DOI: 10.7541/2017.18
Citation: SHAO Ting, QIN Chuan-Jie, YUAN Deng-Yue, WEN Zheng-Yong, LI Hua-Tao. RESTORATION OF FLESH FATTY ACID COMPOSITION IN DARKBARBEL CATFISH (PELTEOBAGRUS VACHELLI) USING A FINISHING FISH OIL DIET[J]. ACTA HYDROBIOLOGICA SINICA, 2017, 41(1): 139-145. DOI: 10.7541/2017.18
邵婷, 覃川杰, 袁登越, 文正勇, 李华涛. 再投喂鱼油对瓦氏黄颡鱼肌肉脂肪酸组成的影响[J]. 水生生物学报, 2017, 41(1): 139-145. DOI: 10.7541/2017.18
引用本文: 邵婷, 覃川杰, 袁登越, 文正勇, 李华涛. 再投喂鱼油对瓦氏黄颡鱼肌肉脂肪酸组成的影响[J]. 水生生物学报, 2017, 41(1): 139-145. DOI: 10.7541/2017.18

RESTORATION OF FLESH FATTY ACID COMPOSITION IN DARKBARBEL CATFISH (PELTEOBAGRUS VACHELLI) USING A FINISHING FISH OIL DIET

Funds: 

the National Natural Science Foundation of China 31402305

the Educational Commission of Sichuan Province of China 14ZA0249

More Information
  • Abstract: This study aimed to evaluate the effects of 50%-100% soybean oil on growth performance and flesh fatty acid composition of darkbarbel catfish (Pelteobagrus vachelli), so as to assess the effects of refeeding fish oil (FO) on flesh fatty acid composition. Four isonitrogenous, isolipidic diets, i.e., FO, soybean oil (SO), 50% FO+50% SO (S1), and 25% FO+75% SO (S2), were fed to triplicate groups of 40 juvenile P. vachelli[(1.10±0.12) g] for 80d. At the end of the 80d period, all fish were fed with FO for 30d. The results showed that growth rates, hepatosomatic index (HSI), and proximate composition in darkbarbel catfish were not affected by SO. With increasing SO levels, the percentages of oleic acid, arachidonic acid, and monounsaturated fatty acids significantly increased (P < 0.05). However, docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA), highly unsaturated fatty acid (HUFA) levels and n-3/n-6 ratios significantly reduced with dietary SO (P < 0.05). After 30d on FO, flesh levels of DHA, EPA, and Σ n-3 HUFA significantly increased in groups S2 and SO (P < 0.05), but not to the same extent as those in the FO-containing groups except S1. The results revealed that it was possible to substitute almost 100% of FO with SO in the diets of darkbarbel catfish without affecting growth performance. A refeeding period of 30d with 100% FO significantly increased flesh levels of Σn-3 HUFA, 20:5n-3, and 22:6n-3 in fish which were fed diets containing SO in the first stage.
    摘要: 为研究植物油替代鱼油对瓦氏黄颡鱼(Pelteobagrus vachelli)生长及肌肉脂肪组成的影响及重投喂鱼油对瓦氏黄颡鱼肌肉脂肪酸组成的影响,实验以大豆油分别替代饲料中的0(FO)、50(S1)、75(S2)和100%(SO)的鱼油配制等氮、等能的颗粒饲料,每组设置3个平行,养殖80d后,再投喂鱼油30d。结果表明,饲料中添加豆油不会显著影响瓦氏黄颡鱼的增重率、肝体指数和体成分(P>0.05)。随着饲料中大豆油含量的增加,S2和SO组肌肉中C18:1n-9、C18:2n-6和单不饱和脂肪酸比例显著增加(P < 0.05),而C20:5n-3,C22:5n-3及n-3/n-6比例显著下降(P < 0.05)。再投喂鱼油30d后,SO组肌肉中C18:3n-6、C20:4n-6、Σ n-9、Σ n-6和S2组中C18:1n-9、Σ n-6比例显著下降(P < 0.05),而S2和SO组肌肉中Σn-3多不饱和脂肪酸、C20:5n-3和C22:5n-3比例显著增加(P < 0.05)。在生产中,可采用先植物油饲料、后鱼油饲料的养殖方式提高瓦氏黄颡鱼肌肉品质(增加有益人类健康的多不饱和脂肪酸)。
  • Table  1   Ingredients (g/100 g) and chemical composition of the experimental diets

    Ingredients Dietary treatments
    FO S1 S2 SO
    Fish meal 50.00 50.00 50.00 50.00
    Flour 35.00 35.00 35.00 35.00
    Mineralsa 3.00 3.00 3.00 3.00
    Vitaminsb 1.00 1.00 1.00 1.00
    Additives 1.00 1.00 1.00 1.00
    Fish oil 5.00 2.50 1.50 0.00
    Soybean oil 0.00 2.50 3.50 5.00
    Chemical composition (g/100 g dry matter)
    Dry matter 87.80 89.20 89.20 88.70
    Crude protein 45.60 44.30 44.30 44.70
    Crude lipid 7.60 7.80 7.80 8.10
    Ash 11.20 11.80 11.80 11.90
    Gross energy (kJ/g) 18.70 20.10 20.10 18.90
    Note: FO: Fish oil diet; S1: 50% soybean oil+50% fish oil; S2: 75% soybean oil+25% fish oil; SO: Soybean oil; a. Mineral premix (mg/kg diet): NaCl, 500; MgSO4·7H2O, 4575.0; NaH2PO4·2H2O, 12500.0; KH2PO4, 16000.0; Ca (H2PO4)2·H2O, 6850.0; FeSO4, 1250.0; C6H10CaO6·5H2O, 1750.0; ZnSO4·7H2O, 111.0; MnSO4·4H2O, 61.4; CuSO4·5H2O, 15.5; CoSO4·6H2O, 0.5; KI, 1.5; Starch, 6, 385.1; b. Vitamin premix (per kg diet): vitamin A, 5, 500 IU; vitamin D3, 1, 000 IU; vitamin E, 50 IU; vitamin K, 10 mg; niacin, 100 mg; riboflavin, 20 mg; pyridoxine, 20 mg; thiamin, 20 mg; biotin, 0.1 mg; D-calcium pantothenate 50 mg; folacin, 5 mg; B12, 20 mg; ascorbic acid, 100 mg; inositol, 100 mg
    下载: 导出CSV

    Table  2   Fatty acid composition of the experimental diets (% total fatty acids; mean±SD, n=3)

    Fatty acid FO S1 S2 SO
    18:1n-9 42.48 43.5 46.98 50.61
    18:2n-6 17.52 14.7 11.93 7.51
    18:3n-6 0.61 0.46 0.43 0.41
    20:1n-9 3.12 3.03 2.22 1.37
    20:3n-6 0.31 0.38 0.44 0.37
    22:1n-9 2.83 2.97 3.96 5.05
    20:4n-6 0.51 0.37 0.29 0.21
    22:2 0.23 - - 0.20
    20:5n-3 1.85 1.33 1.14 0.68
    24:1n-9 0.24 0.30 0.36 0.48
    22:5n-3 0.46 0.32 0.26 0.22
    22:6n-3 1.99 1.36 0.52 0.30
    ∑SFA1 23.23 27.00 28.00 30.77
    ∑MUFA2 48.95 50.34 56.39 57.96
    ∑HUFA3 27.82 22.66 15.61 11.27
    n-34 4.90 3.00 1.92 1.20
    n-65 19.15 15.91 11.09 8.50
    n-3/n-6 0.26 0.19 0.17 0.14
    Note:1 SFA: saturated fatty acid; 2 MUFA: mono unsaturated fatty acid; 3 HUFA: high unsaturated fatty acid; 4 n-3: 20:5 n-3 and 22:6 n-3;5 n-6: 18:2 n-6, 18:3 n-6, 20:3 n-6, and 20:4 n-6
    下载: 导出CSV

    Table  3   Growth performance of darkbarbel catfish at the end of growth period (GP) and restoration period (RP; % total fatty acids; mean±SD; n=9)

    Group FO S1 S2 SO
    RP GP RP GP RP GP RP GP
    Initial body weight (g) 1.11±0.17 1.13±0.12 1.11±0.15 1.11±0.12
    Final body weight (g) 8.02±3.90 11.42±2.71 11.32±5.28 14.65±4.13 11.40±4.30 14.62±3.75 8.50±3.22 12.39±4.17
    Feed intake (g/fish) 17.72±1.28 7.75±1.29 23.78±1.35 8.79±1.47 23.81±1.31 8.83±1.53 19.75±0.24 8.94±1.46
    Liver weight (g) 0.13±0.08 0.19±0.08 0.21±0.12 0.24±0.06 0.21±0.08 0.23±0.05 0.16±0.06 0.23±0.07
    SGR (%/d) 1.89±0.49 1.92±0.45 2.20±0.51 2.10±0.48 2.28±0.39 2.25±0.26 1.98±0.35 2.04±0.32
    HSI (%) 1.59±0.34 1.62±0.41 1.82±0.33 1.78±0.48 1.83±0.38 1.76±0.45 1.83±0.24 1.69±0.35
    FCR 1.92±0.25 1.98±0.34 2.07±0.32 2.14±0.26 2.18±0.23 2.27±0.17 2.21±0.29 2.01±0.36
    Note: Means with different superscripts represent statistically significant differences within the same row (P < 0.05); the same applies below
    下载: 导出CSV

    Table  4   Proximate composition (%) of darkbarbel catfish at the end of the 80d period on the experimental diets and at the end of the 30d period on the fish oil diet (mean±SD; n=3;N=36)

    Groups Dietary treatments
    FO S1 S2 SO
    Flesh on experimental diet (80d)
    Moisture 75.42±1.79 76.12±1.53 75.99±1.86 74.76±1.81
    Protein 16.23±0.62 16.83±0.71 15.91±0.98 16.72±0.49
    Lipid 7.83±0.76 8.12±0.68 7.98±0.82 7.59±0.94
    Ash 1.25±0.83 1.17±0.96 1.22±0.65 1.29±0.47
    Flesh on FO diet (30d)
    Moisture 74.98±2.46 75.91±1.38 75.69±1.86 76.13±1.25
    Protein 17.35±0.92 17.62±0.85 17.47±0.33 16.94±0.28
    Lipid 7.65±0.84 7.19±0.97 8.02±0.54 7.98±0.69
    Ash 1.19±0.96 1.28±0.57 1.17±0.64 1.24±0.39
    下载: 导出CSV

    Table  5   LPL and HL activities at the end of the 80d period on the experimental diets and at the end of the 30d period on the fish oil diet (mean±SD; n=9)

    Groups Dietary treatments
    FO S1 S2 SO
    On experimental diet (80d)
    LPL 1.59±0.12a 1.28±0.09b 1.09±0.13b 0.97±0.08b
    HL 1.51±0.09 1.47±0.15 1.39±0.17 1.45±0.08
    On FO diet (30d)
    LPL 1.85±0.15a 1.78±0.08a 1.45±0.11b 1.15±0.08b
    HL 1.65±0.12 1.62±0.08 1.62±0.06 1.40±0.11
    下载: 导出CSV

    Table  6   Flesh fatty acid composition at the end of growth period (GP) and restoration period (RP; % total fatty acids; mean±SD; n=9)

    Groups FO S1 S2 SO
    GP RP GP RP GP RP GP RP
    Σ SFA 28.51±1.06a 28.90±0.21 23.72±1.10b 24.08±0.94 22.96±0.32b 24.83±0.59 17.85±0.49c 19.68±0.92*
    Σ MUFA 51.57±2.59a 51.03±0.63 58.57±1.44b 58.10±1.72 59.97±0.61b 58.11±0.83 60.72±1.24b 60.41±1.47
    Σ n-9 19.91±2.50ab 20.05±0.61 17.70±0.36a 18.49±1.70 17.05±0.66c 17.04±0.40 21.41±1.22a 18.89±0.57*
    18:1n-9 44.82±2.41a 44.42±0.54 53.46±1.51b 53.07±1.55 55.32±0.50b 52.58±0.82* 57.60±1.03c 57.50±1.67
    Σ n-6 43.29±2.42a 43.05±0.50 50.57±1.34a 49.62±1.77 52.72±0.66b 50.43±0.83* 53.92±1.11b 51.33±1.69*
    18:2n-6 14.77±1.71 14.65±0.42 13.44±0.52 14.19±1.13 13.45±0.54 13.99±0.16 13.46±1.14 13.93±0.59
    18:3n-6 12.91±1.19a 12.65±0.42 12.26±0.63a 12.43±1.02 11.96±0.66a 11.47±0.15 14.52±1.14b 12.96±0.49*
    20:4n-6 0.31±0.03a 0.32±0.01 0.37±0.02b 0.35±0.01 0.42±0.04b 0.40±0.02 0.49±0.05c 0.44±0.01*
    Σ n-3 HUFA 4.39±0.53a 4.30±0.40 3.89±0.75b 4.07±0.72 3.04±0.11c 3.43±0.23* 3.08±0.28c 3.42±0.12*
    20:5n-3 0.66±0.08a 0.61±0.06 0.57±0.04b 0.60±0.08 0.47±0.08c 0.52±0.09* 0.45±0.05c 0.49±0.05*
    22:5n-3 0.56±0.01a 0.53±0.05 0.41±0.01b 0.44±0.03 0.37±0.01b 0.43±0.01* 0.35±0.01b 0.42±0.06*
    22:6n-3 3.16±0.41a 3.18±0.32 2.39±0.35b 2.82±0.41* 2.23±0.10b 2.69±0.17* 2.29±0.20b 2.65±0.19*
    n-3/n-6 0.29±0.01a 0.29±0.02 0.28±0.06a 0.29±0.06 0.22±0.00b 0.26±0.01* 0.23±0.02b 0.25±0.01
    Note: Only major fatty acids and fatty acid classes are reported; Means within the same rows with different superscripts are signifi-cantly different within GP (P < 0.05). Means with asterisk superscripts are significantly different between GP and RP within the same group (P < 0.05)
    下载: 导出CSV
  • [1]

    Pike I H. Eco-efficiency in aquaculture:global catch of wild fish used in aquaculture[J]. International Aquafeed, 2005, 8:38-39

    [2]

    FAO. The State of World Fisheries and Aquaculture. 2010, 63

    [3]

    Tacon A G J. Use of fish meal and fish oil in aquaculture:a global perspective[J]. Aquatic Resources, Culture and Development, 2004, 1(1):3-14 https://www.researchgate.net/publication/247492393_Use_of_fish_meal_and_fish_oil_in_aquaculture_a_global_perspective

    [4]

    Caballero M J, Obach A, Rosenlund G, et al. Impact of different dietary lipid sources on growth, lipid digestibility, tissue fatty acid composition and histology of rainbow trout, Oncorhynchus mykiss[J]. Aquaculture, 2002, 214(S1-4), 253-271 https://www.researchgate.net/publication/223454120_Impact_of_different_dietary_lipid_sources_on_growth_lipid_digestibility_tissue_fatty_acid_composition_and_histology_of_rainbow_trout_Oncorhynchus_mykiss

    [5]

    Bell G, Torstensen B, Sargent J. Replacement of marine fish oils with vegetable oils in feeds for farmed salmon[J]. Lipid Technology, 2005, 17:7-11

    [6]

    Izquierdo M S, Montero D, Robaina L, et al. Alterations in fillet fatty acid profile and flash quality in gilthead seabream (Sparus aurata) fed vegetable oils for a long term period. Recovery of fatty acid profiles by fish oil feeding[J]. Aquaculture, 2005, 250(1-2):431-444 doi: 10.1016/j.aquaculture.2004.12.001

    [7]

    Mourente G, Bell J G. Partial replacement of dietary fish oil with blends of vegetable oils (rapeseed, linseed and palm oils) in diets for European sea bass (Dicentrarchus labrax L.) over a long term growth study:effects on flesh and liver fatty acid composition and effectiveness of a fish oil finishing diet[J]. Comparative Biochemistry Physiology, Part B, 2006, 145(4):389-399 https://www.researchgate.net/profile/Jgbell_Bell/publication/6739698_Partial_replacement_of_dietary_fish_oil_with_blends_of_vegetable_oils_rapeseed_linseed_and_palm_oils_in_diets_for_European_sea_bass_Dicentrarchus_labrax_L_over_a_long_term_growth_study/links/00b495294cb2b3c8aa000000.pdf?origin=publication_list

    [8]

    Izquierdo M S, Obach A, Arantzamendi L, et al. Dietary li-pid sources for seabream and seabass:growth performance, tissue composition and flesh quality[J]. Aquaculture Nutrition, 2003, 9(9):397-407 http://www.docin.com/p-1772229329.html

    [9]

    Francis D S, Turchini G M, Jones P L, et al. Growth performance, feed efficiency and fatty acid composition of juvenile Murray cod, Maccullochella peelii peelii, fed graded levels of canola and linseed oil[J]. Aquaculture Nutrition, 2007, 13(5):335-350 doi: 10.1111/anu.2007.13.issue-5

    [10]

    Fountoulaki E, Vasilaki A, Hurtado R, et al. Fish oil substitution by vegetable oils in commercial diets for gilthead sea bream (Sparus aurata L.); effects on growth performance, flesh quality and fillet fatty acid profile Recovery of fatty acid profiles by a fish oil finishing diet under fluctuating water temperatures[J]. Aquaculture, 2009, 289(S3-4):317-326

    [11]

    Turchini G M, Mentasti T, Froyland L, et al. Effects of alternative lipid sources on performance, tissue chemical composition, mitochondrial fatty acid oxidation capabilities and sensory characteristics in brown trout (Salmo trutta L)[J]. Aquaculture, 2003, 225(1-4):251-267 doi: 10.1016/S0044-8486(03)00294-1

    [12]

    Guillou A, Soucy P, Khailil M, et al. Effects of dietary vegetable and marine lipid on the growth and organoleptic quality of flesh of brook charr (Salvelinus fontinalis)[J]. Aquaculture, 1995, 136(3):351-362

    [13]

    Mourente G, Good J E, Bell J G. Partial substitution of fish oil with rapeseed, linseed and olive oil for European sea bass (Dicentrarchus labrax L.):effects on flesh fatty acid composition, plasma prostaglandin E2 and F2, immune functions and effectiveness of fish oil finishing diet[J]. Aquaculture Nutrition, 2005, 11(1):25-40 doi: 10.1111/anu.2005.11.issue-1

    [14]

    Piedecausa M A, Mazón M J, García B, et al. Effects of total replacement of fish oil by vegetable oils in the diets of sharpsnout seabream (Diplodus puntazzo)[J]. Aquaculture, 2007, 263(S1-4):211-219 http://www.academia.edu/4666956/Effects_of_total_replacement_of_fish_oil_by_vegetable_oils_in_the_diets_of_sharpsnout_seabream_Diplodus_puntazzo

    [15]

    Panserat S, Hortopan G A, Plagnes-Juan E, et al. Differential gene expression after total replacement of dietary fish meal and fish oil by plant products in rainbow trout (Oncorhynchus mykiss) liver[J]. Aquaculture, 2009, 294(1-2):123-131 doi: 10.1016/j.aquaculture.2009.05.013

    [16]

    Folch J M, Lees M, Sloane-Stanley G H. A simple method for the isolation and purification of total lipides from animal tissues[J]. Journal of Biological Chemistry, 1957, 226(1):497-509 http://www.doc88.com/p-982701724198.html

    [17]

    Regost C, Arzel J, Robin J, et al. Total replacement of fish oil by soybean or linseed oil with a return to fish oil in turbot (Psetta maxima)-1. Growth performance, flesh fatty acid profile, and lipid metabolism[J]. Aquaculture, 2003, 217(1-4):465-482 doi: 10.1016/S0044-8486(02)00259-4

    [18]

    Panserat S, Hortopan G A, Plagnes-Juan E, et al. Differential gene expression after total replacement of dietary fish meal and fish oil by plant products in rainbow trout (Oncorhynchus mykiss) liver[J]. Aquaculture, 2009, 294(S1-2):123-131 http://www.academia.edu/13056658/Differential_gene_expression_after_total_replacement_of_dietary_fish_meal_and_fish_oil_by_plant_products_in_rainbow_trout_Oncorhynchus_mykiss_liver

    [19]

    Michaud S E, Renier G. Direct regulatory effect of fatty acids on macrophage lipoprotein lipase:potential role of PPARs[J]. Diabetes, 2001, 50(3):660-666 doi: 10.2337/diabetes.50.3.660

    [20]

    Richard N, Mourente G, Kaushik S, et al. Replacement of a large portion of fish oil by vegetable oils does not affect lipogenesis, lipid transport and tissue lipid uptake in European seabass (Dicentrarchus labrax L.)[J]. Aquaculture, 2006, 261(3):1077-1087 doi: 10.1016/j.aquaculture.2006.07.021

    [21]

    Liang X F, Oku H, Ogata H Y. The effects of feeding condition and dietary lipid level on lipoprotein lipase gene expression in liver and visceral adipose tissue of red sea bream Pagrus major[J]. Comparative Biochemistry Physiology, Part A, 2002, 131(2):335-342 doi: 10.1016/S1095-6433(01)00481-0

    [22]

    Bell J G, Tocher D R, Henderson R J, et al. Altered fatty acid compositions in Atlantic salmon (Salmo salar) fed diets containing linseed and rapeseed oils can be partially restored by a subsequent fish oil finishing diet[J]. The Journal of Nutrition, 2003, 133(9):2793-2801 http://www.oalib.com/references/19297840

    [23]

    Bell J, Mcevoy J D, Mcghee F, et al. Replacement of fish oil with rapeseed oil in diets of Atlantic salmon (Salmo salar) affects tissue lipid compositions and hepatocyte fatty acid metabolism[J]. Journal of Nutrition, 2001, 131(5):1535-1543 https://www.researchgate.net/publication/11997308_Replacement_of_Fish_Oil_with_Rapeseed_Oil_in_Diets_of_Atlantic_Salmon_Salmo_salar_Affects_Tissue_Lipid_Compositions_and_Hepatocyte_Fatty_Acid_Metabolism?_sg=crQv-i3rPVckMmVXh9Cdpf92SpQdZZr5JEqmT__2IH9cGIWshDCwquHFp5vgRJQvoaWGqqOkaUzolA3VXI131w

    [24]

    Frøyland L, Madsen L, Eckhoff K M, et al. Carnitine palmitoyltransferase I, carnitine palmitoyltransferase Ⅱ, and acyl-CoA oxidase activities in Atlantic salmon (Salmo salar)[J]. Lipids, 1998, 33(9):923-930 doi: 10.1007/s11745-998-0289-4

    [25]

    Montero D, Robaina M J, Caballero R, et al. Growth, feed utilization and flesh quality of European sea bass (Dicentrarchus labrax) fed diets containing vegetable oils:a time-course study on the effect of a re-feeding period with a 100% fish oil diet[J]. Aquaculture, 2005, 248(S1-4):121-134 https://www.researchgate.net/publication/38181745_Growth_feed_utilization_and_flesh_quality_of_European_sea_bass_Dicentrarchus_labrax_fed_diets_containing_vegetable_oils_a_time-course_study_on_the_effect_of_a_re-feeding_period_with_a_100_fish_oil_die

  • 期刊类型引用(2)

    1. 寇红岩,周萌,黄燕华,张玮岚,姚文娟,苗玉涛,闫立新,林蠡. 矿物质铜元素对水产动物生长和免疫的影响. 饲料研究. 2020(07): 155-158 . 百度学术
    2. 李战福,罗金强,杨慧施,罗浩,李玉,陈拥军,罗莉. 草鱼高脂日粮磷酸二氢钙适宜添加量的研究. 水生生物学报. 2019(02): 243-251 . 本站查看

    其他类型引用(4)

表(6)
计量
  • 文章访问数:  1108
  • HTML全文浏览量:  366
  • PDF下载量:  13
  • 被引次数: 6
出版历程
  • 收稿日期:  2016-03-21
  • 修回日期:  2016-07-09
  • 发布日期:  2016-12-31

目录

    /

    返回文章
    返回