-
摘要: 研究以自由生长的爪哇伪枝藻(Free-living S. javanicum, fs)和分离自地衣的爪哇伪枝藻(Symbiotic S. javanicum, ss)为研究对象, 探究了不同生长状态爪哇伪枝藻对高温(45℃)胁迫的响应。结果发现在高温胁迫下, 爪哇伪枝藻光合活性、叶绿素a及类胡萝卜素含量下降; 丙二醛(MDA)、胞外多糖及可溶性蛋白含量上升。在高温处理下, 与fs相比, ss光合活性下降较慢, 且高温处理后ss的叶绿素a及类胡萝卜素含量也明显高于fs。高温处理下, 与fs相比, ss的MDA含量和增长速度均较低; 并且在面临高温胁迫时, ss能够更快的分泌胞外多糖和可溶性蛋白质, 从而在一定程度上达到自我保护的目的。研究结果表明, 在暴露于高温胁迫时, 相较于自由生长状态, 来自地衣的爪哇伪枝藻具有更高的自我保护效率。Abstract: Biological soil crusts (BSCs) are widely distributed in global arid and semi-arid environment, where high temperature stress is one of the critical environmental factors to control the survival of algae. As a common species in BSCs, Scytonema javanicum appears in alga crust stage as free-living form and in lichen crust as symbiotic form to regu-late the formation and development of BSCs. This study explored the effect of high temperature stress (45℃) on symbio-tic (ss) and free-living S. javanicum (fs). The results showed that high temperature stress declined the photosynthetic activity more dramatically in ss compared with in fs, and high temperature stress induced a higher biomass in ss compared with in fs. Compared with fs, ss had lower growth rate and MDA content, and faster extropolysaccharides-released and soluble protein- to protect from damages. The results showed that, compared with free-living form, the S. javanicum from lichens had higher self-protection efficiency when exposed to high temperature.
-
Keywords:
- Biological crust /
- Scytonema javanicum /
- Free /
- Symbiosis /
- High temperature stress /
- Physiological and biochemical
-
-
-
[1] Belnap J, Rosentreter R, Leonard S, et al. Biological soil crusts: ecology and management [J]. Ecological Studies, 2001, (47): 119—131
[2] Bowker M A, Maestre F T, Escolar C. Biological crusts as a model system for examining the biodiversity-ecosystem function relationship in soils [J]. Soil Biology & Biochemistry, 2010, 42(3): 405—417
[3] Lan S B, Wu L, Zhang D L, et al. Successional stages of biological soil crusts and their microstructure variability in Shapotou region (China) [J]. Environmental Earth Science, 2012, 65(1): 77—88 doi: 10.1007/s12665-011-1066-0
[4] Redfield E, Barns S M, Belnap J, et al. Comparative diversity and composition of cyanobacteria in three predominant soil crusts of the Colorado Plateau [J]. FEMS Microbiology Ecology, 2002, 40(1): 55—63 doi: 10.1111/fem.2002.40.issue-1
[5] Housman D C, Powers H H, Collins A D, et al. Carbon and nitrogen fixation differ between successional stages of biological soil crusts in the Colorado Plateau and Chihuahuan Desert [J]. Journal of Arid Environments, 2006, 66(4): 620—634 doi: 10.1016/j.jaridenv.2005.11.014
[6] 吴丽, 张高科, 陈晓国, 等. 生物结皮的发育演替与微生物生物量变化. 环境科学, 2014, 35(4): 1479—1485 http://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201404044.htm Wu L, Zhang G K, Chen X G, et al. Development and succession of biological soil crusts and the changes of microbial biomasses [J]. Environmental Science, 2014, 35(4): 1479—1485
吴丽, 张高科, 陈晓国, 等. 生物结皮的发育演替与微生物生物量变化. 环境科学, 2014, 35(4): 1479—1485 http://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201404044.htm[7] Brock T D. The effect of water potential on photosynthe-sis in whole lichens and in their liberated algal compo-nents [J]. Planta, 1975, 124(1): 13—23 doi: 10.1007/BF00390063
[8] Lange O L, Pfanz H, Kilian E, et al. Effect of low water potential on photosynthesis in intact lichens and their libe-rated algal components [J]. Planta, 1990, 182(3): 467—472 doi: 10.1007/BF02411401
[9] Ilse K, W John C, Margret Z, et al. Antioxidants and photoprotection in a lichen as compared with its isolated symbiotic partners [J]. Proceedings of the National Academy of Sciences, 2005, 102(8): 3141—3146 doi: 10.1073/pnas.0407716102
[10] Lan S B, Li W, Zhang D, et al. Desiccation provides photosynthetic protection for crust cyanobacteria Microcoleus vaginatus from high temperature [J]. Physiologia Plantarum, 2014, 152(2): 345—354 doi: 10.1111/ppl.2014.152.issue-2
[11] 吴沛沛, 饶本强, 郝宗杰, 等. 高温培养条件下爪哇伪枝藻的生理特性和超微结构特征. 水生生物学报, 2012, 36(4): 735—743 http://ssswxb.ihb.ac.cn/CN/abstract/abstract2198.shtml Wu P P, Rao B Q, Hao Z J, et al. Physiological and ultrastructural characteristics of Scytonema javanicum under high temperature [J]. Acta Hydrobiologica Sinica, 2012, 36(4): 735—743
吴沛沛, 饶本强, 郝宗杰, 等. 高温培养条件下爪哇伪枝藻的生理特性和超微结构特征. 水生生物学报, 2012, 36(4): 735—743 http://ssswxb.ihb.ac.cn/CN/abstract/abstract2198.shtml[12] Brock T D. The effect of water potential on photosynthe-sis in whole lichens and in their liberated algal compo-nents [J]. Planta, 1974, 124(1): 13—23
[13] 饶本强. 生态环境因子对荒漠藻及其结皮生长发育的影响研究. 博士学位论文, 中国科学院水生生物研究所, 武汉. 2009 Rao B Q. Influences of environmental factors on desert algae and developments of algal crust [D]. Thesis for doctor of Science, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan. 2009
饶本强. 生态环境因子对荒漠藻及其结皮生长发育的影响研究. 博士学位论文, 中国科学院水生生物研究所, 武汉. 2009[14] Garcia-Pichel F, Castenholz R W. Characterization and biological implications of scytonemin, a cyanobacterial sheath pigment [J]. Journal of Phycology, 1991, 27(3): 395—409 doi: 10.1111/j.0022-3646.1991.00395.x
[15] 李合生. 植物生理生化实验原理和技术. 北京: 高等教育出版社. 2000. 134—260 Li H S. Experiment Principle and Technology of Plant Physiology and Biochemistry [M]. Beijing: High Education Press. 2000, 134—260
李合生. 植物生理生化实验原理和技术. 北京: 高等教育出版社. 2000. 134—260[16] Wu L, Lan S B, Zhang D L, et al. The structure and small-scale vertical distribution of the algae in lichen soil crusts [J]. Microbial Ecology, 2011, 62(3): 715—724 doi: 10.1007/s00248-011-9828-5
[17] Wu L, Zhang G K, Lan S B, et al. Longitudinal photosynthetic gradient in crust lichens’ thalli [J]. Microbial Ecology, 2014, 67(4): 888—896 doi: 10.1007/s00248-014-0366-9
[18] Kolber Z, Zehr J, Falkowski P. Effects of growth irra-diance and nitrogen limitation on photosynthetic energy conversion in photosystem II [J]. Plant Physiology, 1988, 88(3): 923—929 doi: 10.1104/pp.88.3.923
[19] Halliwell B, Gutteridge J M, Cross C E. Free radicals, antioxidants, and human disease: where are we now [J]. Journal of Laboratory & Clinical Medicine, 1992, 119(6): 598—620
[20] Rio D D, Stewart A J, Pellegrini N. A review of recent studies on malondialdehyde as toxic molecule and biological marker of oxidative stress [J]. Nutrition Metabolism & Cardiovascular Diseases, 2005, 15(4): 316—328
[21] Müller P, Li X P, Niyogi K K. Non-photochemical quenching. A response to excess light energy [J]. Plant Physiology, 2001, 125(4): 1558—1566 doi: 10.1104/pp.125.4.1558
[22] Guo Y P, Zhou H F, Zhang L C. Photosynthetic characteristics and protective mechanisms against photooxidation during high temperature stress in two citrus species [J]. Scientia Horticulturae, 2006, 108(3): 260—267 doi: 10.1016/j.scienta.2006.01.029
[23] Hu C, Liu Y, Paulsen B S, et al. Extracellular carbohydrate polymers from five desert soil algae with diffe-rent cohesion in the stabilization of fine sand grain [J]. Carbohydrate Polymers, 2003, 54(1): 33—42 doi: 10.1016/S0144-8617(03)00135-8
[24] Wright D J, Smith S C, Joardar V, et al. UV irradiation and desiccation modulate the three-dimensional extracellular matrix of Nostoc commune (Cyanobacteria) [J]. Journal of Biological Chemistry, 2005, 280(48): 40271—40281 doi: 10.1074/jbc.M505961200
[25] Potts M. Desiccation resistance of prokaryotes [J]. Microbiological Reviews, 1994, 58: 755—805
[26] Chen L, Yang Y, Deng S, et al. The response of carbohydrate metabolism to the fluctuation of relative humi-dity (RH) in the desert soil cyanobacterium Phormidium tenue [J]. European Journal of Soil Biology, 2012, 48(2): 11—16
[27] Ga B, Pj S, Edwards M K K. Role of K+ and amino acids in osmoregulation by the free [J]. Microbiology, 2000, 146(2): 427—433 doi: 10.1099/00221287-146-2-427
-
期刊类型引用(5)
1. 万为民. 配合饲料投喂量和粒径对绿盘鲍稚鲍生长和存活的影响. 渔业现代化. 2022(01): 30-37 . 百度学术
2. 李琪,刘鉴毅,孙艳秋,邹雄,王妤,庄平,冯广朋,赵峰,黄晓荣,杨俊. 投喂策略对多纹钱蝶鱼幼鱼生长的影响. 海洋科学. 2022(03): 93-102 . 百度学术
3. 吕云云. 不同投喂水平对皱纹盘鲍生长、体成分及消化酶活性的影响. 海洋湖沼通报. 2022(03): 16-21 . 百度学术
4. 陈云飞,彭慧珍,刘庄鹏,胡毅,吕怡航,李昭林,张德洪. 投喂水平对黄鳝(Monopterus albus)生长、肠道消化酶活性及部分血清生理生化指标的影响. 渔业科学进展. 2017(02): 114-120 . 百度学术
5. 段国庆,江河,胡王,凌俊,胡玉婷,潘庭双. 投喂水平对黄鳝幼鱼生长的影响. 广东农业科学. 2015(07): 105-109 . 百度学术
其他类型引用(4)