气候变暖与富营养化交互作用对浅水湖泊水-气界面N2O通量的影响

胡博文, 潘萌, 石彭兰, 徐军, 张敏

胡博文, 潘萌, 石彭兰, 徐军, 张敏. 气候变暖与富营养化交互作用对浅水湖泊水-气界面N2O通量的影响[J]. 水生生物学报, 2021, 45(3): 625-635. DOI: 10.7541/2021.2020.027
引用本文: 胡博文, 潘萌, 石彭兰, 徐军, 张敏. 气候变暖与富营养化交互作用对浅水湖泊水-气界面N2O通量的影响[J]. 水生生物学报, 2021, 45(3): 625-635. DOI: 10.7541/2021.2020.027
HU Bo-Wen, PAN Meng, SHI Peng-Lan, XU Jun, ZHANG Min. EFFECT OF CLIMATE WARMING AND EUTROPHICATION ON N2O FLUX AT WATER-AIR INTERFACE OF SHALLOW LAKES[J]. ACTA HYDROBIOLOGICA SINICA, 2021, 45(3): 625-635. DOI: 10.7541/2021.2020.027
Citation: HU Bo-Wen, PAN Meng, SHI Peng-Lan, XU Jun, ZHANG Min. EFFECT OF CLIMATE WARMING AND EUTROPHICATION ON N2O FLUX AT WATER-AIR INTERFACE OF SHALLOW LAKES[J]. ACTA HYDROBIOLOGICA SINICA, 2021, 45(3): 625-635. DOI: 10.7541/2021.2020.027

气候变暖与富营养化交互作用对浅水湖泊水-气界面N2O通量的影响

基金项目: 国家重点研发计划项目(2018YFD0900904); 中国科学院国际合作重点项目(152342KYSB20190025)资助
详细信息
    作者简介:

    胡博文(1995—), 男, 硕士研究生; 主要从事水-气界面间温室气体交换机制的研究。E-mail: hbw21@webmail.hzau.edu.cn

    通信作者:

    张敏(1978—), 女, 副教授; 主要研究方向为淡水生态学。E-mail: zhm7875@mail.hzau.edu.cn

  • 中图分类号: Q178.1

EFFECT OF CLIMATE WARMING AND EUTROPHICATION ON N2O FLUX AT WATER-AIR INTERFACE OF SHALLOW LAKES

Funds: Supported by the National Key Research and Development Program of China (2018YFD0900904); the International Cooperation Project of the Chinese Academy of Sciences (152342KYSB20190025)
    Corresponding author:
  • 摘要: 研究通过构建中尺度控温围隔模拟系统, 模拟21世纪末气候变化与富营养化趋势, 探讨未来气候变暖与富营养化趋势下浅水湖泊水-气界面N2O交换过程的响应特征及机制。结果表明: (1)恒定与波动升温引起的代谢过程及生物间相互作用的改变显著促进了水-气界面间N2O的排放及年累积释放量, 而磷的添加可能因为影响了水体中反硝化代谢的效率而削弱了水-气界面N2O排放及年累积释放量; (2)实验期间随季节转换, 控制系统内优势的初级生产者由水生植物转变为浮游植物, 水体中有机质含量亦不断积累, 研究结果表明季节变化及初级生产者转换均对水-气界面N2O排放量的增加起到了显著促进作用。在气候变化与富营养化趋势下浅水湖泊水-气界面的N2O交换过程主要受到水体中氮磷含量及其比例的变化、水生植物与浮游植物的转换及有机质的积累过程的影响。因此, 气候变暖(恒定和波动升温)能够促进湖泊N2O排放量的上升, 而变暖和营养盐的交互作用会使水-气界面N2O交换更加复杂。
    Abstract: Our study built the shallow-lake mesocosm to simulate the N2O exchange process at the water-air interface throughout the whole experimental periods under climate change and eutrophication. (1) Results of the mesocosm experiment demonstrated that constant and fluctuate warming significantly promoted N2O emissions and annual accumulating emissions due to changes in metabolic processes and biotic interactions. Phosphorus addition affected the efficiency of denitrification metabolism in water to weaken the N2O emission at the water-air interface and annual cumulative emission; (2) In the experimental periods, the dominant primary producer in the mesocosm changed from aquatic plant to phytoplankton, and the organic matter content in the water body accumulated continuously. Our study showed that the above two factors have a significant effect on the increase of N2O emission from the water-air interface, and that the fluxes of N2O from shallow lakes under climate change and eutrophication trends were mainly affected by changes in the ratios of N and P in water bodies and primary producers in the accumulation of organic matter. We concluded that constant and fluctuating climate warming can tilt the N2O balance to higher emission, and the combination of warming and nutrients can cause complex interactions in the N2O exchange in the water-air interface.
  • 图  1   实验期间控制系统内不同处理组的日均水温变化趋势

    Figure  1.   Daily average water temperature in different treatments in mesocosms during the whole experiment period

    图  2   控制系统内处理组间环境因子的季节性变化特征

    Figure  2.   Seasonal variation of environmental factors between experimental treatments in the mesocosms

    图  3   控制系统内不同处理N2O交换通量的月度变化特征

    Figure  3.   Monthly N2O fluxes of each treatment in the mesocosms

    图  4   控制系统中不同处理水-气界面间N2O年累积交换量

    Figure  4.   Total annual N2O flux in water-air interface of different treatments in the mesocosms

    表  1   实验期间控制系统内不同处理的沉水植物PVI指数和浮叶植物盖度的季节性变化特征(均值±标准误)

    Table  1   Submerged plant PVI index and floating-leaf plant coverage of each treatment in mesocosms during the different seasons (Mean±SD)

    组别Group沉水植物PVI指数(冬春)
    Submerged plant
    PVI index (%)
    浮叶植物盖度(夏秋)
    Floating-leaf plant
    coverage (%)
    冬季Winter春季Spring 夏季summer秋季Autumn
    C10.33±2.2276.23±3.6653.27±8.5828.11±7.26
    T21.33±4.7677.17±3.6631.50±8.0614.39±6.56
    V24.39±4.4072.81±4.2328.06±7.438.88±3.50
    P7.61±1.7772.04±4.8754.01±6.8936.58±8.00
    TP15.43±3.2866.25±5.2524.82±8.458.16±4.18
    VP21.68±4.5470.98±4.6614.22±3.362.17±1.20
    下载: 导出CSV

    表  2   控制系统内不同季节N2O交换通量的组间变化特征(均值±标准误)

    Table  2   N2O fluxes of each treatment in mesocosms during the different experiment periods (Mean±SD)

    组别GroupN2O交换通量N2O fluxes [mg/(m2·d)]
    冬季Winter春季Spring夏季Summer秋季Autumn全年Total year
    C–0.033±0.0280.004±0.032ab0.011±0.0760.064±0.067ab0.012±0.027ab
    T–0.086±0.0310.079±0.018a–0.004±0.0260.107±0.034a0.030±0.018ab
    V–0.041±0.0260.069±0.026a0.069±0.0250.100±0.034a0.044±0.016a
    P–0.038±0.032–0.007±0.020b–0.002±0.041–0.012±0.023b–0.014±0.014b
    TP–0.092±0.085–0.036±0.028b–0.014±0.0620.079±0.025a–0.018±0.029b
    VP–0.046±0.039–0.016±0.048ab0.025±0.026–0.002±0.036b–0.014±0.020b
    注: 字母标记同一时期内处理组间的显著差异Note: Letters mark significant differences between treatments during the same experiment period
    下载: 导出CSV

    表  3   整个实验期间不同处理组的N2O交换通量与环境因子的Spearman相关性分析

    Table  3   Spearman correlation analysis of N2O fluxes and environmental factors during the whole experiment period

    组别Group电导率
    Conductivity
    (μS/cm)
    溶解氧Dissolved oxygen
    (mg/L)
    pH溶解性有机碳Dissolved
    organic carbon
    (mg/L)
    总氮Total nitrogen
    (mg/L)
    总磷Total phosphorus
    (mg/L)
    C–0.051–0.060–0.0400.208–0.0390.030
    T0.060–0.302–0.0790.194–0.0260.050
    V0.089–0.353*–0.1530.472**0.1020.230
    P–0.2690.0590.1150.146–0.1880.321*
    TP0.267–0.061–0.1880.1740.2370.101
    VP0.078–0.176–0.1350.0510.0220.040
    下载: 导出CSV
  • [1]

    Sanders I A, Heppell C M, Cotton J A, et al. Emission of methane from chalk streams has potential implications for agricultural practices [J]. Freshwater Biology, 2007, 52(6): 1176-1186. doi: 10.1111/j.1365-2427.2007.01745.x

    [2]

    Ravishankara A R, Daniel J, Portmann R. Nitrous Oxide (N2O): The dominant ozone-depleting substance emitted in the 21st century [J]. Science, 2009, 326(5949): 123-125. doi: 10.1126/science.1176985

    [3]

    IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [M]. Cambridge: Cambridge University Press, 2013: 17-20, 53, 89-90.

    [4]

    Davidson T A, Audet J, Svenning J C, et al. Eutrophication effects on greenhouse gas fluxes from shallow-lake mesocosms override those of climate warming [J]. Global Change Biology, 2015, 21(12): 4449-4463. doi: 10.1111/gcb.13062

    [5]

    IPCC. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [M]. Geneva, Switzerland: IPCC, 2014: 10-12.

    [6]

    Christidis N, Jones G S, Stott P A. Dramatically increasing chance of extremely hot summers since the 2003 European heatwave [J]. Nature Climate Change, 2015, 5(1): 46-50. doi: 10.1038/nclimate2468

    [7]

    Meehl G A, Tebaldi C. More intense, more frequent, and longer lasting heat waves in the 21st century [J]. Science, 2004, 305(5686): 994-997. doi: 10.1126/science.1098704

    [8]

    Huttunen J T, Juutinen S, Alm J, et al. Nitrous oxide flux to the atmosphere from the littoral zone of a boreal lake [J]. Journal of Geophysical Research, 2003, 108(D14): 4421. doi: 10.1029/2002JD002989

    [9]

    Kortelainen P, Larmola T, Rantakari M, et al. Lakes as nitrous oxide sources in the boreal landscape [J]. Global Change Biology, 2019, 26(20): 1-14.

    [10] 郑小兰, 刘敏, 文帅龙, 等. 冬季太湖草、藻型湖区N2O的生成与排放特征 [J]. 中国环境科学, 2018, 38(2): 683-693. doi: 10.3969/j.issn.1000-6923.2018.02.033

    Zheng X L, Liu M, Wen S L, et al. Characteristics of N2O formation and emission in algae and grasstype zones in Lake Taihu in winter [J]. China Environmental Science, 2018, 38(2): 683-693. doi: 10.3969/j.issn.1000-6923.2018.02.033

    [11] 万晓红, 周怀东, 王雨春, 等. 白洋淀湖泊湿地氧化亚氮的排放通量初探 [J]. 生态环境, 2008, 17(5): 1732-1738.

    Wan X H, Zhou H D, Wang Y C, et al. N2O emission flux from Baiyangdian wetland [J]. Ecology and Environment, 2008, 17(5): 1732-1738.

    [12] 高岩, 张芳, 刘新红, 等. 漂浮水生植物对富营养化水体中N2O产生及输移过程的调节作用 [J]. 环境科学学报, 2017, 37(3): 925-933.

    Gao Y, Zhang F, Liu X H, et al. Mediation of production and transportation of N2O in eutrophic water with the free-floating aquatic plant, Eichhornia crassipes [J]. Acta Scientiae Circumastantiae, 2017, 37(3): 925-933.

    [13] 谢燕红, 张弥, 肖薇, 等. 湖泊和水库氧化亚氮通量分析 [J]. 中国环境科学, 2018, 38(9): 3481-3493. doi: 10.3969/j.issn.1000-6923.2018.09.035

    Xie Y H, Zhang M, Xiao W, et al. Analysis of nitrous oxide flux from lakes and reservoirs [J]. China Environmental Science, 2018, 38(9): 3481-3493. doi: 10.3969/j.issn.1000-6923.2018.09.035

    [14]

    Audet J, Neif É M, Cao Y, et al. Heat-wave effects on greenhouse gas emissions from shallow lake mesocosms [J]. Freshwater Biology, 2017, 62(7): 1130-1142. doi: 10.1111/fwb.12930

    [15]

    Jia Z, Liu T, Xia X, et al. Effect of particle size and composition of suspended sediment on denitrification in river water [J]. Science of The Total Environment, 2016(541): 934-940. doi: 10.1016/j.scitotenv.2015.10.012

    [16]

    Xia X, Jia Z, Liu T, et al. Coupled nitrification-denitrification caused by suspended sediment (SPS) in rivers: Importance of SPS size and composition [J]. Environmental Science Technology, 2017, 51(1): 212-221. doi: 10.1021/acs.est.6b03886

    [17]

    Denk T R A, Mohn J, Decock C, et al. The nitrogen cycle: A review of isotope effects and isotope modeling approaches [J]. Soil Biology Biochemistry, 2017, 105(105): 121-137.

    [18]

    Toyoda S, Yoshida N, Koba K. Isotopocule analysis of biologically produced nitrous oxide in various environments [J]. Mass Spectrometry Reviews, 2017, 36(2): 135-160. doi: 10.1002/mas.21459

    [19]

    Mccrackin M L, Elser J J. Atmospheric nitrogen deposition influences denitrification and nitrous oxide production in lakes [J]. Ecology, 2010, 91(2): 528-539. doi: 10.1890/08-2210.1

    [20]

    Yang Z F, Zhao Y, Xia X H. Nitrous oxide emissions from Phragmites australis-dominated zones in a shallow lake [J]. Environmental Pollution, 2012(166): 116-124. doi: 10.1016/j.envpol.2012.03.006

    [21]

    Silvennoinen H, Liikanen A, Torssonen J, et al. Denitrification and N2O effluxes in the Bothnian Bay (Northern Baltic Sea) river sediments as affected by temperature under different oxygen concentrations [J]. Biogeochemistry, 2008, 88(1): 63-72. doi: 10.1007/s10533-008-9194-7

    [22]

    Usui T, Koike I, Ogura U. N2O production, nitrification and denitrification in an estuarine sediment [J]. Estuarine Coastal and Shelf Science, 2001, 52(6): 769-781. doi: 10.1006/ecss.2000.0765

    [23] 刘婷婷, 王晓锋, 袁兴中, 等. 湖、库水体N2O排放研究进展 [J]. 湖泊科学, 2019, 31(2): 319-335. doi: 10.18307/2019.0202

    Liu T T, Wang X F, Yuan X Z, et al. Review on N2O emission from lakes and reservoirs [J]. Journal of Lake Sciences, 2019, 31(2): 319-335. doi: 10.18307/2019.0202

    [24]

    Kosten S, Kamarainen A M, Jeppesen E, et al. Climate-related differences in the dominance of submerged macrophytes in shallow lakes [J]. Global Change Biology, 2009, 15(10): 2503-2517. doi: 10.1111/j.1365-2486.2009.01969.x

    [25]

    Rajkumar A N, Barnes J, Ramesh R, et al. Methane and nitrous oxide fluxes in the polluted Adyar River and estuary, SE India [J]. Marine Pollution Bulletin, 2008, 56(12): 2043-2051. doi: 10.1016/j.marpolbul.2008.08.005

    [26] 秦伯强, 高光, 朱广伟, 等. 湖泊富营养化及其生态系统响应 [J]. 科学通报, 2013, 58(10): 855-864. doi: 10.1360/csb2013-58-10-855

    Qin B Q, Gao G, Zhu G W, et al. Lake eutrophication and its ecosystem response [J]. Chinese Science Bulletin, 2013, 58(10): 855-864. doi: 10.1360/csb2013-58-10-855

    [27]

    Liboriussen L, Landkildehus F, Meerhoff M, et al. Global warming: Design of a flow-through shallow lake mesocosm climate experiment [J]. Limnology and Oceanography: Methods, 2005, 3(1): 1-9. doi: 10.4319/lom.2005.3.1

    [28]

    Guo X, Huang J, Luo Y, et al. Projection of heat waves over China for eight different global warming targets using 12 CMIP5 models [J]. Theoretical and Applied Climatology, 2017(128): 507-522. doi: 10.1007/s00704-015-1718-1

    [29]

    Russo S, Dosio A, Graversen R G, et al. Magnitude of extreme heat waves in present climate and their projection in a warming world [J]. Journal of Geophysical Research, 2014, 119(22): 12500-12512.

    [30] 陈晓晨, 徐影, 姚遥. 不同升温阈值下中国地区极端气候事件变化预估 [J]. 大气科学, 2015, 39(6): 1123-1135.

    Chen X C, Xu Y, Yao Y. Changes in climate extremes over China in a 2℃, 3℃, and 4℃ warmer world [J]. Chinese Journal of Atmospheric Sciences, 2015, 39(6): 1123-1135.

    [31] 高伟, 高波, 严长安, 等. 鄱阳湖流域人为氮磷输入演变及湖泊水环境响应 [J]. 环境科学学报, 2016, 36(9): 3137-3145.

    Gao W, Gao B, Yan C A, et al. Evolution of anthropogenic nitrogen and phosphorus inputs to Lake Poyang Basin and its’ effect on water quality of lake [J]. Acta Scientiae Circumstantiae, 2016, 36(9): 3137-3145.

    [32] 黄文钰, 许朋柱. 骆马湖营养盐收支 [J]. 湖泊科学, 2001, 13(3): 240-246. doi: 10.3321/j.issn:1003-5427.2001.03.007

    Huang W Y, Xu P Z. Nutrient balance in Luomahu lake [J]. Journal of Lake Science, 2001, 13(3): 240-246. doi: 10.3321/j.issn:1003-5427.2001.03.007

    [33] 国家环境保护总局. 水和废水监测分析方法(第四版) [M]. 北京: 中国环境出版社, 2002: 243-285.

    State Environmental Protection Administration of China. Water and Wastewater Monitoring Analysis Method (Fourth edition) [M]. Beijing: Chinese Environment Science Press, 2002: 243-285.

    [34] 杨玉珍, 夏未铭, 杨瑾, 等. 水体中叶绿素a测定方法的研究 [J]. 中国环境监测, 2011, 27(5): 24-27. doi: 10.3969/j.issn.1002-6002.2011.05.006

    Yang Y Z, Xia W M, Yang J, et al. The research of methods of measuring chlorophyll a in water [J]. Environmental Monitoring in China, 2011, 27(5): 24-27. doi: 10.3969/j.issn.1002-6002.2011.05.006

    [35]

    Olsen S, Chan F, Li W, et al. Strong impact of nitrogen loading on submerged macrophytes and algae: a long-term mesocosm experiment in a shallow Chinese lake [J]. Freshwater Biology, 2015, 60(8): 1525-1536. doi: 10.1111/fwb.12585

    [36]

    Schulthess R V, Kühni M, Gujer W. Release of nitric and nitrous oxides from denitrifying activated sludge [J]. Water Research, 1995, 29(1): 215-226. doi: 10.1016/0043-1354(94)E0108-I

    [37]

    Schrieruijl A P, Veraart A J, Leffelaar P A, et al. Release of CO2 and CH4 from lakes and drainage ditches in temperate wetlands [J]. Biogeochemistry, 2011, 102(1): 265-279.

    [38]

    Allen A, Gillooly J, Brown J. Linking the global carbon cycle to individual metabolism [J]. Functional Ecology, 2005, 19(2): 202-213. doi: 10.1111/j.1365-2435.2005.00952.x

    [39]

    Yvon-Durocher G, Jones J, Trimmer M, et al. Warming alters the metabolic balance of ecosystem [J]. Philosophical Transactions of the Royal Society of London Series B, 2010, 365(1549): 2117-2126. doi: 10.1098/rstb.2010.0038

    [40]

    Soued C, Giorgio P A D, Maranger R. Nitrous oxide sinks and emissions in boreal aquatic networks in Quebec [J]. Nature Geoscience, 2015, 9(2): 1-5.

    [41]

    Freymond C V, Wenk C B, Frame C H, et al. Year-round N2O production by benthic NO x reduction in a monomictic southalpine lake [J]. Biogeosciences, 2013, 10(12): 8373-8383. doi: 10.5194/bg-10-8373-2013

    [42]

    Wang H, Yang L, Wang W, et al. Nitrous oxide (N2O) fluxes and their relationships with water-sediment characteristics in a hyper-eutrophic shallow lake, China [J]. Journal of Geophysical Research Biogeosciences, 2015, 112(G1): 129-137.

    [43]

    Zhu D, Chen H, Yuan X, et al. Nitrous oxide emissions from the surface of the Three Gorges Reservoir [J]. Ecological Engineering, 2013, 60(11): 150-154.

    [44]

    Juutinen S, Rantakari M, Kortelainen P, et al. Methane dynamics in different boreal lake types [J]. Biogeosciences, 2009, 6(2): 209-223. doi: 10.5194/bg-6-209-2009

    [45]

    Potter C, Matson P A, Vitousek P M, et al. Process modeling of controls on nitrogen trace gas emissions from soils worldwide [J]. Journal of Geophysical Research, 1996, 101(D1): 1361-1377. doi: 10.1029/95JD02028

    [46]

    Mori T, Ohta S, Ishizuka S, et al. Effects of phosphorus addition on N2O and NO emissions from soils of an Acacia mangium plantation [J]. Soil Science Plant Nutrition, 2010, 56(5): 782-788. doi: 10.1111/j.1747-0765.2010.00501.x

    [47]

    Zheng M, Zhang T, Liu L, et al. Effects of nitrogen and phosphorus additions on nitrous oxide emission in a nitrogen-rich and two nitrogen-limited tropical forests [J]. Biogeosciences, 2016, 13(11): 3503-3517. doi: 10.5194/bg-13-3503-2016

    [48]

    Butterbachbahl K, Baggs E M, Dannenmann M, et al. Nitrous oxide emissions from soils: how well do we understand the processes and their controls [J]? Philosophical Transactions of the Royal Society B, 2013, 368(1621): 20130122. doi: 10.1098/rstb.2013.0122

    [49]

    Richardson D J, Felgate H, Watmough N J, et al. Mitigating release of the potent greenhouse gas N2O from the nitrogen cycle–could enzymic regulation hold the key [J]? Trends in Biotechnology, 2009, 27(7): 388-397. doi: 10.1016/j.tibtech.2009.03.009

    [50]

    Ciudad G, Werner A, Bornhardt C, et al. Differential kinetics of ammonia- and nitrite-oxidizing bacteria: A simple kinetic study based on oxygen affinity and proton release during nitrification [J]. Process Biochemistry, 2006, 41(8): 1764-1772. doi: 10.1016/j.procbio.2006.03.032

    [51]

    Pinaochoa E, Alvarezcobelas M, Rodrigo M A, et al. Nitrogen sedimentation in a lake affected by massive nitrogen inputs: autochthonous versus allochthonous effects [J]. Freshwater Biology, 2006, 51(12): 2228-2239. doi: 10.1111/j.1365-2427.2006.01645.x

    [52]

    Silvennoinen H, Liikanen A, Torssonen J, et al. Denitrification and nitrous oxide effluxes in boreal, eutrophic river sediments under increasing nitrate load: a laboratory microcosm study [J]. Biogeochemistry, 2008, 91(2): 105-116.

    [53]

    Adrian R, Oreilly C M, Zagarese H, et al. Lakes as sentinels of climate change [J]. Limnology and Oceanography, 2009, 54(6): 2283-2297.

    [54]

    Rogério J P, Santos M A, Santos E O. Influence of environmental variables on diffusive greenhouse gas fluxes at hydroelectric reservoirs in Brazil [J]. Brazilian Journal of Biology, 2013, 73(4): 753-764. doi: 10.1590/S1519-69842013000400011

    [55]

    Forshay K J, Dodson S I. Macrophyte presence is an indicator of enhanced denitrification and nitrification in sediments of a temperate restored agricultural stream [J]. Hydrobiologia, 2011, 668(1): 21-34. doi: 10.1007/s10750-011-0619-2

    [56] 张力, 张振华, 高岩, 等. 不同水生植物对富营养化水体释放气体的影响 [J]. 生态与农村环境学报, 2014, 30(6): 736-743.

    Zhang L, Zhang Z H, Gao Y, et al. Effect of aquatic plants on emission of gases from eutrophic water [J]. Journal of Ecology and rural Environment, 2014, 30(6): 736-743.

  • 期刊类型引用(6)

    1. 赵燕, 吕若萱, 操志晨, 朱波润, 张芯玮, 唐清美, 张秋胜. 口服型重组草鱼生长激素基因的创建及其原核表达最佳条件研究. 鲁东大学学报(自然科学版). 2020(01): 40-47 . 百度学术
    2. 汪亚平, 何利波. 我国转基因鱼研制的历史回顾与展望. 生物工程学报. 2016(07): 851-860 . 百度学术
    3. 关海红, 梁利群. 转基因鲤与普通鲤鱼精巢结构和发育的对比观察. 东北农业大学学报. 2013(03): 95-100+151 . 百度学术
    4. 关海红, 梁利群. 转基因鲤性腺结构及繁殖性能的研究. 江苏农业科学. 2013(03): 191-194 . 百度学术
    5. 苗田田, 赵金良, 苌建菊, 许淼洋. 外源生长激素对尼罗罗非鱼生长、骨骼肌纤维增生及肥大的影响. 农业生物技术学报. 2012(11): 1315-1320 . 百度学术
    6. 刘春雷, 常玉梅, 梁利群, 徐丽华, 刘金亮, 闫学春. 饥饿对转基因鲤与野生鲤生长竞争和性腺发育的影响. 生态学报. 2010(21): 5975-5982 . 百度学术

    其他类型引用(4)

图(4)  /  表(3)
计量
  • 文章访问数:  2001
  • HTML全文浏览量:  769
  • PDF下载量:  76
  • 被引次数: 10
出版历程
  • 收稿日期:  2020-02-11
  • 修回日期:  2020-07-23
  • 网络出版日期:  2021-03-22
  • 发布日期:  2021-05-14

目录

    /

    返回文章
    返回