APPARENT DIGESTIBILITY COEFFICIENTS OF SEVEN PROTEIN SOURCES FOR JUVENILE HYBRID GROUPER (EPINEPHELUS FUSCOGUTTATUS♀×EPINEPHELUS LANCEOLATUS♂)
-
摘要: 研究测定了珍珠龙胆石斑鱼(Epinephelus fuscoguttatus♀×Epinephelus lanceolatu♂)对黄粉虫粉(TMM)、黑水虻虫粉(HIM)、乙醇梭菌蛋白(CAP)、荚膜甲基球菌蛋白(MCM)、小球藻粉(CVM)、棉籽浓缩蛋白(CPC)和秘鲁鱼粉(PFM)共7种蛋白源的表观消化率(ADCs)。试验配制1组含50%鱼粉的基础饲料, 而7组试验饲料按70%的基础饲料和30%的蛋白源配制而成, 8组饲料都加入0.1%氧化钇(Y2O3)作为外源标志物。将初始平均体重为(9.95±0.50) g的杂交石斑鱼幼鱼随机分配到0.3 m3的玻璃钢桶中, 每个处理组设置3个重复(桶), 每桶30尾鱼。经过5d的试验饲料饲喂驯化后, 每天两次用虹吸法收集粪便样本。结果表明, 7种蛋白源的干物质ADCs从高至低依次为: CVM>TMM=CAP=CPC>HIM=MCM=PFM。CVM的干物质、粗蛋白和大多数氨基酸(包括蛋氨酸和苏氨酸)的ADCs最高。而HIM的干物质、粗蛋白和大多数氨基酸的ADCs低于其他组。CAP的赖氨酸ADCs高于其他6种蛋白原料, 粗蛋白ADCs仅次于CVM。PFM的干物质ADCs明显低于CVM, 但与CAP没有显著差异。此外, PFM的粗蛋白ADCs低于CVM、CAP和MCM三种蛋白原料, 并且其赖氨酸ADCs低于CAP, 苏氨酸ADCs也低于CAP和CVM。研究表明, 这7种蛋白源中小球藻粉(CVM)和乙醇梭菌蛋白(CAP)在珍珠龙胆石斑鱼中显示出较高的表观消化率。Abstract: The apparent digestibility coefficients (ADCs) of Tenebrio molitor meal (TMM), Hermetia illucens meal (HIM), Clostridium autoethanogenum protein (CAP), Methylococcus capsulatus meal (MCM), Chlorella vullgaris meal (CVM), Cottonseed protein concentrate (CPC) and Peruvian fishmeal (PFM) were determined in juvenile hybrid grouper (Epinephelus fuscoguttatus♀×Epinephelus lanceolatu♂). A basal diet (including 50% fishmeal) and seven test diets (700 g/kg of the basal diet and 300 g/kg of each test ingredient) were formulated with 0.1% yttrium oxide (Y2O3) as an inert marker. The juvenile hybrid groupers, with initial average body weight of (9.95±0.50) g, were randomly distributed into 0.3 m³ fiberglass tanks, each tank with 30 fish. The faeces samples were collected twice-daily by siphoning following feeding fish after five days of domestication. The ADCs of dry matter of seven test ingredients were ranked as CVM>TMM=CAP=CPC>HIM=MCM=PFM (P<0.05). CVM showed the highest ADCs of dry matter (DM), crude protein (CP) and most amino acids (including methionine and threonine) except crude lipids (CL), whereas HIM had the relatively lower ADCs of DM, CP and most amino acids except CL. CAP had a higher lysine digestibility than the other six test ingredients, and was only lower than CVM in the ADC of CP. The ADC of DM in PFM was significantly lower than that in CVM (P<0.05), and showed no differences with that in CAP (P>0.05). Besides, PFM showed a lower ADC of CP than the ADCs of CP in CVM, CAP and MCM (P<0.05), and showed a lower ADC of lysine than that in CAP as well as a lower ADC of threonine than those in CAP and CVM (P<0.05). Overall, this study showed the advantage of CVM and CAP among the seven protein sources on the digestibility of feed available in hybrid grouper.
-
虹鳟(Oncorhynchus mykiss)是世界广泛养殖的肉食性冷水鱼类之一。三倍体虹鳟细胞内拥有三套完整染色体, 具有生长快、肉质好和无基因污染等优点[1], 目前已在青海、新疆、甘肃和重庆等省(自治区)推广和养殖。主要养殖模式以水库大水面网箱养殖、陆基工厂化循环水养殖及利用山间溪流的流水池塘养殖为主。
随着产业的不断发展以及人民美好生活的需要, 鱼类品质成为关注的重点。鱼类品质是一个较为复杂的概念, 一般体现在表观、肉质、气味及营养价值方面[2]。目前关于鱼肉品质影响因素的研究主要集中在环境[3—5]、饲料[6—8]、种质[9—11]、规格[12—14]和屠宰方式[15—17]等。对罗非鱼(Oreochromis spp.)[18, 19]、大黄鱼(Larimichthys crocea)[20, 21]和草鱼(Ctenopharyngodon idella)[22, 23]的研究表明, 不同养殖模式对鱼肉品质影响显著, 而关于不同养殖模式三倍体虹鳟鱼肉品质差异对比却鲜见报道。
因此, 本研究通过比较网箱养殖、工厂化循环水养殖及流水池塘养殖三种模式下三倍体虹鳟在表观、肉质、气味及营养价值方面的差异, 系统研究三种养殖模式下三倍体虹鳟品质特点, 为三倍体虹鳟养殖产业可持续发展提供基础数据。
1. 材料与方法
1.1 实验材料
网箱、工厂化循环水和流水池塘养殖三倍体虹鳟分别购自于青海[体重为(3.99±0.17) kg]、新疆[体重为(4.07±0.15) kg]和重庆[体重为(4.39±0.15) kg], 依次命名为W、G和C养殖模式。每个养殖模式随机取12尾冰鲜去脏商品鱼并于宰杀72h内完成鱼肉pH、肉色、质构和持水力等物理品质指标的测定, 去皮分割特定部位的鱼肉置于入–80℃冰箱保存, 用于后续化学品质指标的测定, 不同指标的测定部位如图 1所示。
图 1 鱼肉品质指标测定区域分布图A. 检测肉色、质构和pH; B. 检测肌间隔宽度、汁液流失率、失水率和失脂率; C. 检测羟脯氨酸、水/盐溶性蛋白和肌糖原; D. 检测挥发性气味物质; E. 检测水分、灰分、脂肪、脂肪酸、总蛋白、氨基酸和矿物元素Figure 1. Sampling segments for measurements of the quality parameters in the fillet of triploid rainbow troutA. Segment is used to assay muscle color, texture, pH; B. Segment is used to assay myoseptum thickness, liquid losses, water losses and fat losses; C. Segment is used to assay hydroxyproline, water/salt soluble protein and fillet glycogen; D. Segment is used to assay volatile odor compounds; E. Segment is used to assay moisture, ash content, lipid content, fatty acids, total protein, amino acids and mineral elements1.2 实验方法
表观指标测定分析 测量每条鱼的体重、体长、内脏重和剖下的鱼片重, 并计算肥满度、去脏率和出肉率, 计算公式如下:
$ \begin{array}{c}肥\; 满\; 度(g/{\rm{cm}}^{3}) = W/L^{3} × 100 \;\; \end{array} $
(1) $ \begin{array}{c}去\; 脏\; 率(\text{%}) = (W - W_{v})/W \times 100 \end{array} $
(2) $ \begin{array}{c}出\; 肉\; 率(\text{%}) = W_{ f}/W × 100 \qquad\; \end{array} $
(3) 式中, W为鱼体质量(g), Wv为内脏质量(g), Wf为鱼片质量(g), L为鱼体长(cm)。
使用体式显微镜(P2-DBL, 尼康, 日本)对三倍体虹鳟腹部特定部位鱼肉进行拍照, 之后使用Image-J软件统计三倍体虹鳟鱼肉肌间隔宽度。
采用色彩色差仪(CR-400, 柯尼卡美能达, 日本)测定三倍体虹鳟鱼肉的特定两个点的肉色, 并由L*(亮度值)、a*(红色值-绿色值轴)、b*(黄色值-蓝色值轴)、Cab*(色度值)和Hab°(色调角)表示。参考Nickell等[24]和Yeşilayer等[25]方法, 按式(4)-(5)分别计算Cab*(色度值)和Hab°(色调角)。
$ Cab^*(色\; 度\; 值) = \sqrt {a^{*2} + b^{*2}}$
(4) $ {{Hab}}^\circ (色\; 调\; 角) = {\rm{ta}}{{\rm{n}}^{{\rm{ - 1}}}} \left(\frac{{b^*}}{{a^*}}\right) \left( {a^* > 0} \right) $
(5) 肉质指标测定分析 在肉色测定点采用食品物性分析仪(TMS-PRO, FTC, 美国)的TPA(texture profile analysis)模式对鱼肉质构进行测定, 相关参数为: 圆柱形探头直径8 mm; 力量单元25 kg; 起始力0.1 N; 形变量60%; 检测速度60 mm/min。之后在对应点使用带有固态电极的pH计(S220, 梅特勒, 瑞士)进行鱼肉pH测定。
参照Schubring等[26]的方法, 将鱼肉放入提前烘干的三层滤纸(定量滤纸ϕ12.5 cm)中, 使用食品物性分析仪(TMS-PRO, FTC, 美国)进行挤压处理, 将滤纸放入75℃烘箱烘24h, 称重, 计算鱼肉汁液流失率、失水率和失脂率。
$ \begin{array}{c}汁\; 液\; 流\; 失\; 率(\text{%}) = (m _{1} - m _{0}) /m × 100\end{array} $
(6) $ 失\; 脂\; 率(\text{%}) = (m _{2} - m _{0})/m × 100 \qquad$
(7) $ \begin{array}{c}失\; 水\; 率(\text{%}) = (m _{1} - m _{2})/m × 100 \qquad \end{array} $
(8) 式中, m为样品的重量(g), m0为滤纸的重量(g), m1为挤压样品后滤纸的重量(g), m2为烘24h后滤纸的重量(g)。
采用AOAC标准方法[27]检测鱼肉中总蛋白和灰分含量。鱼肉总蛋白含量采用凯氏定氮法(N×6.25)测定(2300-Auto-analyzer, FOSS, 丹麦); 鱼肉灰分含量采用550℃燃烧法测定。鱼肉脂肪含量采用氯仿甲醇提取法[28]测定。鱼肉水分采用冻干法测定。
鱼肉碱溶性、碱不溶性羟脯氨酸和总羟脯氨酸含量及水溶性蛋白和盐溶性蛋白含量的测定方法参考马睿[29]。肌糖原含量的测定采用南京建成试剂盒(货号: A043-1-1)。
气味指标测定分析 挥发性气味物质测定参考Ma[1]方法。采用气相色谱-质谱联用仪(GC-MS; QP2020, 岛津, 日本)测定。
挥发性气味物质的评价方法: 用气味活度值(OAV, Odor activity value)来描述单个挥发性气味物质对整体气味的贡献。当该物质OAV≥1时, 为气味活性物质, 对鱼肉整体风味有贡献。
$ {\rm{OAV}} = C/OT$
(9) 式中, C为挥发性气味物质的相对浓度, OT为挥发性气味物质的阈值。
营养价值指标测定分析 鱼肉结合态氨基酸含量的测定方法参照GB5009.124—2016并略有改动, 使用HPLC(HP1260, 安捷伦, 美国)进行测定。检测参数: 采用Agilent 1260 HPLC自动进样器, 对氨基酸标准品和样品氨基酸进行OPA-FMOC在线衍生。硼酸缓冲液(pH 10.4)2.5 μL, 氨基酸标准品或样品液0.5 μL, 混合2次, 等待0.5min, 洗针, 邻苯二甲醛(OPA)0.5 μL, 混合6次, 洗针, 9-芴甲基氯甲酸酯(FMOC)0.5 μL, 混合6次, 洗针, 衍生。色谱条件: G7121A荧光检测器(FLD); 色谱柱: ZORBAX Eclipse-AAA(4.6 mm×150 mm, 3.5 μm); 柱温: 40℃; FLD检测波长: 0.00—15.00min(λEx=340 nm, λEm=450 nm), 15.00—26.00min(λEx=266 nm, λEm=305 nm)。流动相A: 40 mmol/L Na2HPO4(pH 7.8); 流动相B: 乙腈﹕甲醇﹕水=(45﹕45﹕10, v/v/v); 泵设置: 流速为2.0 mL/min, 柱温为40℃, 停止时间为26min。
测定鱼肉脂肪时用氯仿-甲醇提取的脂质用于测定脂肪酸组成, 参照Ma等[30]方法将脂肪酸甲酯化, 而后通过GC-MS(QP2020, 岛津, 日本)分离测定样品中脂肪酸甲酯和添加已知浓度的内标(十七烷甲酯)。气相参数: 色谱柱为Rxi—5 sil MS(30 mm×0.25 mm, 0.25 μm); 色谱柱升温程序为以15℃/min速度从150℃升温到200℃, 而后以2℃/min速度从200℃升温到250℃; 载气为氦气, 1 mg/min; 接口温度为250℃, 采用分流模式(分流比: 20﹕1)。质谱参数: 电子轰击离子源, 离子源温度为230℃, 接口温度为280℃, 电子能量为70 eV, 质量扫描范围: 45—500 m/z。每个脂肪酸甲酯定性通过外标(Supelco, 美国)确定, 定量根据内标浓度及目标脂肪酸甲酯和内标的峰面积之比计算。参照Ulbricht等[31], 计算致动脉粥样硬化指数(AI)和血栓形成指数(TI), 具体计算公式如下:
$ \begin{array}{c}{\rm{AI}} = ({\rm{C}}12:0 + {\rm{C}}14:0 + {\rm{C}}16:0)/\\({\rm{Sum PUFAs}} + {\rm{Sum MUFAs}}) \end{array}$
(10) $ \begin{array}{c} {\rm{TI}} = ({\rm{C}}14:0 + {\rm{C}}16:0 + {\rm{C}}18:0)/\\(0.5 × {\rm{Sum\;PUFAs}} + 0.5 × {\rm{Sum }}\\{\rm{n}}\text{-}6\; {\rm{PUFAs}} + 3 × {\rm{Sum\; n}}\text{-}3 \;{\rm{PUFAs}} + \\{\rm{n}}\text{-}3\; {\rm{PUFAs}}/{\rm{n}}\text{-}6 \;{\rm{PUFAs}}) \end{array} $
(11) 式中, C12:0为十二烷酸, C14:0为十四烷酸, C16:0为十六烷酸, C18:0为十八烷酸, MUFA为单不饱和脂肪酸, PUFA为多不饱和脂肪酸, n-3 PUFA为n-3系列多不饱和脂肪酸, n-6 PUFA为n-6系列多不饱和脂肪酸。
鱼肉中矿物元素测定方法参考GB5009.268—2016, 采用电感耦合等离子体质谱法(ICP-MS; iCAP RQ, 赛默飞, 美国)进行测定。
1.3 统计分析
实验数据均采用平均值 ± 标准误(mean±SE)表示, 使用SPSS 25.0统计软件进行单因素方差分析, 当差异显著时(P<0.05), 采用Tukey’s检验进行多重比较; 使用SPSS 25.0统计软件进行主成分分析和聚类分析, 用Origin 2019软件绘图。
2. 结果
2.1 表观指标
由表 1可知, 不同养殖模式三倍体虹鳟的去脏率和肌间隔宽度差异不显著(P>0.05); 不同养殖模式三倍体虹鳟的肥满度差异显著(P<0.05), 从大到小分别是G>W>C。W组和G组三倍体虹鳟出肉率差异不显著(P>0.05), 但都显著低于C组(P<0.05)。
表 1 不同养殖模式三倍体虹鳟表观品质指标对比Table 1. Comparison of biometrical parameters of triploid rainbow trout cultured under different modes (n=12)指标Indicator 网箱养殖模式
Cage culture工厂化循环水
养殖模式
Recirculating aquaculture system流水池塘
养殖模式
Flowing pond肥满度Condition factor (g/cm3) 2.08±
0.06b2.61±
0.12c1.61±
0.05a去脏率Gutted yield (%) 85.64±
0.3786.96±
0.9386.58±
0.48出肉率Fillet yield (%) 60.51±
2.33a63.22±
0.75a76.53±
1.41b肌间隔宽度
Myoseptum thickness (mm)0.76±
0.030.78±
0.060.73±
0.05亮度值L* 47.30±
0.79b44.65±
0.37a46.16±
0.82ab红色值a* 16.20±
0.37a22.58±
0.72b14.59±
0.67a黄色值b* 24.20±
0.90b26.22±
0.66b18.59±
1.04a色度值Cab* 28.47±
1.07b34.62±
0.91c23.64±
1.22a色调角Hab° 59.02±
1.89b49.32±
0.57a51.72±
0.54a注: 表中数据表示为平均值±标准误(n=12); 同行数据上标不同表示组间存在显著差异(P<0.05); 下同Note: Data present mean±SE (n=12); Values in each row with different superscripts are significantly different (P<0.05), the same applies below 在肉色方面, W组和G组三倍体虹鳟鱼肉的亮度值(L*)和C组差异不显著(P>0.05), 但W组鱼肉的亮度值(L*)显著高于G组鱼肉的亮度值(L*)(P<0.05); W组和C组三倍体虹鳟鱼肉的红色值(a*)差异不显著(P>0.05), 但都显著低于G组(P<0.05); W组和G组三倍体虹鳟鱼肉的黄色值(b*)差异不显著(P>0.05), 但都显著高于C组(P<0.05); 不同养殖模式三倍体虹鳟的色度值(Cab*)差异显著(P<0.05), 从大到小分别是G>W>C; G组和C组三倍体虹鳟色调角(Hab°)差异不显著(P>0.05), 但都显著低于W组(P<0.05)。
2.2 肉质指标
如表 2所示, 在物理性状方面, 不同养殖模式三倍体虹鳟鱼肉的破裂力和pH差异不显著(P>0.05); G组和C组三倍体虹鳟鱼肉的硬度、内聚性、弹性和咀嚼性差异不显著(P>0.05), 但均显著低于W组(P<0.05); 不同养殖模式三倍体虹鳟的鱼肉的黏附性差异显著(P<0.05), 从大到小分别是C>G>W。在持水力方面, 不同养殖模式三倍体虹鳟鱼肉的失脂率差异不显著(P>0.05); G组和C组三倍体虹鳟鱼肉的汁液流失率和失水率差异不显著(P>0.05), 但均显著低于W组(P<0.05)。
表 2 不同养殖模式三倍体虹鳟鱼肉肉质指标对比Table 2. Comparison of fillet texture of triploid rainbow trout cultured under different modes指标Indicator 网箱养殖
模式
Cage culture工厂化循环
水养殖模式
Recirculating
aquaculture
system流水池塘
养殖模式
Flowing pond物理性状Physical property 质构Texture 硬度Hardness (N) 11.34±
0.31b8.62±
0.42a7.91±
0.48a破裂力Fracture (N) 8.01±
0.767.24±
0.635.44±
0.55黏附性Adhesiveness (mJ) 2.82±
0.26a4.22±
0.30b5.70±
0.23c内聚性Cohesiveness 0.22±
0.01b0.19±
0.01a0.19±
0.01a弹性Springness (mm) 9.05±
0.43b6.65±
0.44a5.81±
0.22a咀嚼性Chewiness (mJ) 21.63±
1.51b10.53±
1.13a7.93±
0.54a持水力Water holding capacity (%) 汁液流失率Liquid losses 16.04±
0.69b11.04±
0.40a12.15±
0.33a失脂率Fat losses 6.32±
0.564.98±
0.435.41±
0.20失水率Water losses 9.73±
0.39b6.06±
0.21a6.73±
0.31apH 6.28±
0.036.25±
0.026.18±
0.03化学成分Chemical component (g/kg) 水分Moisture 592.30±
3.50a590.80±
7.10a618.10±
5.10b灰分Ash 13.50±
0.50b10.50±
0.70a12.10±
0.50ab脂肪Lipid 189.70±
3.47b206.93±
5.34b163.35±
4.84a总蛋白Total protein 182.34±
5.29173.80±
2.88183.19±
0.99胶原蛋白Collagen 碱溶性羟脯氨酸
Alkali soluble hydroxyproline0.04±
0.01b0.01±
0.00a0.03±
0.01b碱不溶性羟脯氨酸
Alkali insoluble hydroxyproline0.07±
0.000.08±
0.010.07±
0.01总羟脯氨酸
Total hydroxyproline0.11±
0.010.09±
0.020.10±
0.01水溶性蛋白
Water soluble protein50.16±
1.89a69.03±
1.69b66.05±
2.89b盐溶性蛋白
Salt soluble protein54.10±
1.94a77.69±
2.25b56.37±
4.03a肌糖原Fillet glycogen 0.64±
0.06b0.41±
0.03a0.98±
0.08c在化学成分方面, 不同养殖模式三倍体虹鳟鱼肉的总蛋白、碱不溶性羟脯氨酸和总羟脯氨酸的含量差异不显著(P>0.05); W组和G组三倍体虹鳟鱼肉的水分和脂肪含量差异不显著(P>0.05), 但均显著高于C组(P<0.05); W组和G组三倍体虹鳟鱼肉的灰分和C组差异不显著(P>0.05), 但G组三倍体虹鳟鱼肉的灰分显著高于W组(P<0.05); W组和C组三倍体虹鳟鱼肉的碱溶性羟脯氨酸含量差异不显著(P>0.05), 但均显著高于G组(P<0.05); G组和C组三倍体虹鳟鱼肉的水溶性蛋白含量差异不显著(P>0.05), 但均显著高于W组(P<0.05); W组和C组三倍体虹鳟鱼肉的盐溶性蛋白差异不显著(P>0.05), 但均显著低于G组(P<0.05); 不同养殖模式三倍体虹鳟鱼肉的肌糖原含量差异显著(P<0.05), 从大到小分别是C>W>G。
2.3 气味指标
如表 3所示, W组、G组和C组分别检测到20、21和23种气味活性物质, 其中醇类3种、酮类3类、醛类15类和呋喃类2种。不同养殖模式三倍体虹鳟鱼肉气味活性物质的总OAV、庚醛和辛醛的OAV差异显著(P<0.05), 从小到大分别是C>G>W; 2-辛烯-1-醇、2,3-戊二酮和3,5-辛二烯-2-酮在W组三倍体虹鳟鱼肉中未检测出; (E)-2-庚烯醛、(E,E)-2,4-庚二烯醛在G组三倍体虹鳟鱼肉中未检测出; G组和C组三倍体虹鳟鱼肉的1-庚醇、壬醛的OAV差异不显著(P>0.05), 但均显著高于W组(P<0.05); W组和G组三倍体虹鳟鱼肉的1-辛烯-3-醇、2,3-辛二酮、戊醛、己醛和(E)-2-葵烯醛的OAV差异不显著(P>0.05), 但均显著低于C组(P<0.05); 不同养殖模式三倍体虹鳟鱼肉中(Z)-4-庚烯醛、(E,Z)-2,6-壬二烯醛、2-乙基呋喃和2-戊基呋喃的OAV差异不显著(P>0.05); W组和C组三倍体虹鳟鱼肉中(E)-2-辛烯醛的OAV差异不显著(P>0.05), 但均显著高于G组(P<0.05); W组和C组三倍体虹鳟鱼肉中(E)-2-壬烯醛、癸醛、十一醛的OAV和G组差异不显著(P>0.05), 但C组三倍体虹鳟鱼肉中(E)-2-壬烯醛、癸醛和十一醛的OAV显著高于W组(P<0.05); G组和C组三倍体虹鳟鱼肉中(E,E)-2,4-壬二烯醛的OAV和G组差异不显著(P>0.05), 但C组三倍体虹鳟鱼肉中(E,E)-2,4-壬二烯醛的OAV显著高于W组(P<0.05)。
表 3 不同养殖模式三倍体虹鳟鱼肉气味活性物质的气味活度值对比Table 3. Comparison of odor activity values (OAVs) of odor active substances in the muscles of triploid rainbow trout cultured under different modes气味活性物质
Odor-active compound气味描述Odor description 阈值Threshold
(μg/kg)OAVs 网箱养殖
模式
Cage culture工厂化循环
水养殖模式
Recirculating
aquaculture system流水池塘养殖模式
Flowing pond1-庚醇1-Heptanol 青绿味、坚果味、发酵味[32] Green, nutty, fermented 5.4[33] 6.84±0.45a 12.35±1.17b 14.39±0.87b 1-辛烯-3-醇1-Octen-3-ol 泥土味、蘑菇味、发酵味[34, 35] Earthly, mushroom, fermented 1.5[36] 99.57±5.86a 129.35±12.27a 203.40±13.57b 2-辛烯-1-醇2-Octen-1-ol 泥土味、蘑菇味[37] Earthly, mushroom 40[38] nd. 1.21±0.00 1.46±0.09 2,3-戊二酮
2,3-Pentanedione黄油味、焦糖味、果香[32] Buttery, caramel, fruity 30[35] nd. 1.18±0.00 1.28±0.10 2,3-辛二酮2,3-Octanedione 金属味[39] Metallic 12[40] 8.05±0.61a 11.00±0.74a 18.14±1.57b 3,5-辛二烯-2-酮
3,5-Octadien-2-one青绿味、花香味、类黄瓜味[35] Green, floral, cucumber 150[40] nd. 1.22±0.16 1.30±0.10 戊醛Pentanal 辛辣味、类乙醛味[32] Pungent, acetaldehyde-like 9[40] 2.42±0.15a 2.97±0.31a 4.26±0.33b 己醛Hexanal 青草味、鱼腥味、脂香、辛辣味[32] Grassy, fishy, fatty, pungent 4.5[38] 102.88±2.97a 118.13±10.50a 183.05±12.74b (Z)-4-庚烯醛
(Z)-4-Heptenal鱼腥味、煮土豆味[34] Fishy, boiled potato 4.2[40] 6.96±0.65 7.00±0.95 6.24±0.64 庚醛Heptanal 青绿味、鱼腥味、可可味、坚果味、脂香、蘑菇味[32, 41] Green, fishy, floral, chocolate, nutty, fatty, mushroom 2.8[36] 20.66±1.60a 35.19±3.12b 54.43±3.25c (E)-2-庚烯醛
(E)-2-Heptenal烤肉味、熟鱼味[39, 41] Roast meat, cooked fish 13[36] 1.61±0.21 nd. 3.87±0.79 辛醛Octanal 青绿味、花香、橙香、脂香[32] Green, floral, orange, fatty 0.7[38] 165.64±8.49a 257.36±21.52b 354.60±17.98c (E,E)-2,4-庚二烯醛
(E,E)-2,4-Heptadienal青草味、鱼腥味[42] Grassy, fishy, 15.4[36] 1.87±0.10 nd. 1.38±0.34 (E)-2-辛烯醛
(E)-2-Octenal类黄瓜味、辛辣味、脂香、蘑菇味[41, 43] Cucumber, pungent, fatty, mushroom 3[38] 12.13±1.10ab 10.05±0.99a 15.08±1.20b 壬醛Nonanal 青绿味、鱼腥味、脂香、橙香[41] Green, fishy, fatty, orange 1.1[36] 126.56±8.98a 305.23±41.16b 314.01±47.69b (E,Z)-2,6-壬二烯醛
(E,Z)-2,6-Nonadienal类黄瓜味、花香[35] Cucumber, floral 0.8[40] 31.57±3.01 31.82±5.43 34.42±3.75 (E)-2-壬烯醛
(E)-2-Nonenal青绿味、木质味、花香、果香[41, 43] Green, woody, floral, fruity 0.08[38] 168.51±20.15a 207.08±35.73ab 376.06±68.64b 癸醛Decanal 青绿味、花香、脂香、类黄瓜味[32] Green, floral, fatty, cucumber 2[38] 4.80±0.54a 8.70±1.15ab 12.68±1.52b (E,E)-2,4-壬二烯醛
(E,E)-2,4-Nonadienal脂香[39] Fatty 0.09[38] 87.35±10.18ab 51.26±8.73a 105.17±13.01b (E)-2-癸烯醛
(E)-2-Decenal脂香、橙香[39] Fatty, orange 0.3[38] 28.81±0.34a 36.39±3.99a 112.94±14.76b 十一醛Undecanal 青绿味、果香、薄荷味[32, 43] Green, fruity, minty 5[40] 1.33±0.17a 1.86±0.25ab 2.60±0.32b 2-乙基呋喃
2-Ethyl-furan橡胶味、辛辣味、绿豆味[36, 41] Rubber, pungent, green bean 2.3[36] 2.88±0.45 2.86±0.54 3.86±0.55 2-戊基呋喃
2-Pentyl-furan甘草味, 橙香[39] Liquorice, orange 6[38] 1.32±0.14 1.55±0.17 2.75±0.47 气味活度总值Total OAVs 780.74±8.77a 1029.90±85.53b 1602.66±182.54c 注: nd. 表示没有检测出; 下同Note: nd. not detected; the same applies below 2.4 营养价值指标
由表 4可知, 不同养殖模式三倍体虹鳟鱼肉中检测了17种结合态氨基酸, 其中必需氨基酸8种, 非必需氨基酸9种。W组和G组三倍体虹鳟鱼肉的组氨酸含量和C组差异不显著(P>0.05), 但W组三倍体虹鳟鱼肉的组氨酸含量显著高于G组(P<0.05); G组和C组三倍体虹鳟鱼肉的精氨酸和脯氨酸含量差异不显著(P>0.05), 但均显著低于W组(P<0.05); G组和C组三倍体虹鳟鱼肉的胱氨酸含量差异不显著(P>0.05), 但均显著高于W组(P<0.05); 其他各种氨基酸、必需氨基酸、非必需氨基酸及总氨基酸含量在3组间无显著差异(P>0.05)。
表 4 不同养殖模式三倍体虹鳟鱼肉结合态氨基酸含量对比Table 4. Comparison of fillet bound amino acids contents of triploid rainbow trout cultured under different modes (mg/100g)氨基酸Amino acid 网箱养殖
模式
Cage culture工厂化循环水
养殖模式
Recirculating aquaculture system流水池塘
养殖模式
Flowing pond必需氨基酸Essential amino acid 组氨酸His 547.71±
94.86b278.90±
32.06a490.49±
25.61ab异亮氨酸Ile 786.61±
25.98748.40±
56.87760.48±
6.69亮氨酸Leu 1323.88±
34.851257.51±
104.261283.39±
19.49赖氨酸Lys 1467.77±
34.551453.17±
110.921464.08±
15.57蛋氨酸Met 550.88±
15.81475.00±
33.40508.71±
14.02苯丙氨酸Phe 753.48±
17.03699.03±
63.83708.69±
4.47苏氨酸Thr 794.92±
19.31738.59±
57.52763.98±
13.10缬氨酸Val 946.59±
31.93872.81±
72.66892.77±
15.61总必需氨基酸
Total essential amino acids7171.84±
239.906511.12±
394.196872.59±
95.45非必需氨基酸Non-essential amino acid 丙氨酸Ala 1158.05±
33.59994.43±
83.641019.78±
17.29精氨酸Arg 1268.84±
30.32b977.43±
82.25a995.46±
18.93a天冬氨酸Asp 1720.26±
56.341578.91±
91.581669.87±
31.07胱氨酸Cys 1201.85±
82.39a1716.80±
108.74b1693.81±
88.37b谷氨酸Glu 2425.12±
49.712288.63±
154.936300.06±
3940.64甘氨酸Gly 1034.27±
80.58929.99±
54.85935.57±
39.11丝氨酸Ser 711.12±
10.51644.98±
53.45662.35±
11.82酪氨酸Tyr 626.25±
17.42556.05±
47.31570.16±
9.28脯氨酸Pro 936.95±
11.78b526.27±
24.17a564.66±
26.12a非必需氨基酸
Total non-essential amino acids11082.70±
213.3810182.32±
612.3210471.16±
193.33总氨基酸Total amino acids 18254.54±
328.8916661.60±
1069.7117343.74±
265.86由表 5可知, 不同养殖模式三倍体虹鳟鱼肉中均检测出20种脂肪酸, 其中饱和脂肪酸(SFA)7种, 单不饱和脂肪酸(MUFA)6种, 多不饱和脂肪酸(PUFA)7种。W组和C组三倍体虹鳟鱼肉的C12:0、C16:0、C18:1n-9(Z)、C20:1n-9、C22:1n-9、饱和脂肪酸(SFA)、单不饱和脂肪酸(MUFA)、总脂肪酸含量(TFA)及n-3/n-6的比值差异不显著(P>0.05), 但均显著低于G组(P<0.05); 不同养殖模式三倍体虹鳟鱼肉的C14:0、C24:1n-9、C20:5n-3(EPA)、C22:6n-3(DHA)和n-3系列脂肪酸(n-3)含量差异显著(P<0.05), 从大到小分别是G>W>C; G组和C组三倍体虹鳟鱼肉的C18:0含量和W组差异不显著(P>0.05), 但G组三倍体虹鳟鱼肉的C18:0含量显著高于C组(P<0.05); W组和G组三倍体虹鳟鱼肉的C20:0、C18:1n-9(E)含量和C组差异不显著(P>0.05), 但G组三倍体虹鳟鱼肉的C20:0、C18:1n-9(E)含量显著高于W组(P<0.05); W组和G组三倍体虹鳟鱼肉的C22:0、C24:0、C18:2n-6、C20:2n-6、多不饱和脂肪酸(PUFA)和n-6系列脂肪酸(n-6)含量差异不显著(P>0.05), 但均显著高于C组(P<0.05); G组和C组三倍体虹鳟鱼肉的C16:1n-7、C20:3n-6和C20:4n-6(ARA)含量差异不显著(P>0.05), 但均显著高于W组(P<0.05); W组和G组三倍体虹鳟鱼肉的C18:3n-3含量差异不显著(P>0.05), 但均显著低于C组(P<0.05); W组和C组三倍体虹鳟鱼肉的动脉粥样硬化指数(AI)和G组差异不显著(P>0.05), 但W组三倍体虹鳟鱼肉的动脉粥样硬化指数(AI)显著高于C组(P<0.05); G组和C组三倍体虹鳟鱼肉的致血栓指数(TI)和W组差异不显著(P>0.05), 但C组三倍体虹鳟鱼肉的致血栓指数(TI)显著高于G组(P<0.05)。
表 5 不同养殖模式三倍体虹鳟鱼肉脂肪酸含量对比Table 5. Comparison of fillet fatty acids contents of triploid rainbow trout cultured under different modes (mg/100g)脂肪酸
Fatty acid网箱养殖模式
Cage culture工厂化循环水
养殖模式
Recirculating
aquaculture system流水池塘
养殖模式
Flowing pondC12:0 1.76±0.10a 2.82±0.03b 1.51±0.11a C14:0 113.90±6.77b 138.06±3.73c 87.16±2.33a C16:0 882.87±40.40a 1022.16±13.39b 791.47±17.87a C18:0 413.95±
28.92ab478.59±
5.40b346.86±
10.88aC20:0 19.68±
5.15a34.38±
0.51b24.94±
2.34abC22:0 15.64±
0.76b17.38±
0.14b11.22±
0.83aC24:0 5.12±
0.33b4.49±
0.30b2.84±
0.24aC16:1n-7 226.57±
12.25a290.38±
4.76b266.97±
7.49bC18:1n-9(Z) 1967.25±
28.93a2896.49±
102.61b2445.83±
164.53abC18:1n-9(E) 230.32±
17.70a340.69±
8.16b255.98±
11.65aC20:1n-9 236.45±
10.19a357.67±
7.84b232.38±
20.26aC22:1n-9 25.80±
0.90a37.14±
1.20b24.77±
2.39aC24:1n-9 19.56±
0.98b30.24±
0.97c13.04±
0.91aC18:2n-6 1508.88±
56.43b1554.06±
41.23b1166.24±
49.30aC20:2n-6 121.46±
8.38b140.23±
1.64b85.95±
9.29aC20:3n-6 30.94±
2.41a44.04±
0.33b46.24±
3.47bC20:4n-6(ARA) 51.55±
1.47a60.71±
2.38b66.90±
1.15bC18:3n-3 20.05±
0.26a20.86±
0.97a42.90±
0.31bC20:5n-3(EPA) 85.07±
3.35b122.95±
3.69c65.18±
4.52aC22:6n-3(DHA) 349.09±
23.52b489±
9.34c258.58±
7.38aSFA 1452.92±
80.10a1697.87±
16.00b1266.00±
29.74aMUFA 2705.95±
60.85a3952.61±
120.73b3238.97±
197.57aPUFA 2448.86±
100.26b2856.89±
47.30b1927.53±
141.07aPUFA/SFA 1.69±
0.041.68±
0.031.52±
0.08n-3 454.21±
27.01b632.81±
13.30c366.66±
9.57an-6 1712.84±
67.37b1799.03±
40.15b1365.33±
52.25an-3/n-6 0.27±
0.01a0.35±
0.00b0.27±
0.02aTFA 6325.92±
220.81a8082.32±
153.27b6236.96±
266.44aAI 0.26±
0.01b0.23±
0.00ab0.22±
0.01aTI 0.41±
0.01ab0.38±
0.01a0.44±
0.00b注: SFA. 饱和脂肪酸; MUFA. 单不饱和脂肪酸; PUFA. 多不饱和脂肪酸; n-3. n-3系列脂肪酸; n-6. n-6系列脂肪酸; TFA. 总脂肪酸; AI. 动脉粥样硬化指数; TI. 致血栓指数Note: SFA. Saturated fatty acids. MUFA. Mono-unsaturated fatty acids. PUFA. Poly-unsaturated fatty acids. n-3. n-3 fatty acids. n-6. n-6 fatty acids. TFA. Total fatty acids. AI: Atherosclerosis index. TI. Thrombosis index 由表 6可知, 不同养殖模式三倍体虹鳟鱼肉中均检测出8种矿物元素。不同养殖模式三倍体虹鳟鱼肉的钾、磷、镁、钙、锌和铜含量差异不显著(P>0.05); W组和G组三倍体虹鳟鱼肉的铁含量和C组差异不显著(P>0.05), 但W组三倍体虹鳟鱼肉的铁含量显著高于G组(P<0.05); 不同养殖模式三倍体虹鳟鱼肉的硒含量差异显著(P<0.05), 从大到小分别是W>G>C。
表 6 不同养殖模式三倍体虹鳟鱼肉矿物元素含量对比Table 6. Comparison of fillet mineral elements contents in muscle of triploid rainbow trout cultured under different modes (mg/100g)矿物元素
Mineral
element网箱养殖
模式
Cage culture工厂化循环水
养殖模式
Recirculating
aquaculture system流水池塘
养殖模式
Flowing pond钾K 367.92±5.43 367.87±3.70 368.65±0.04 磷P 83.80±4.08 72.90±0.01 76.81±1.92 镁Mg 16.30±1.06 13.99±0.75 15.82±1.05 钙Ca 3.99±0.85 1.64±0.16 3.56±0.04 铁Fe 1.00±0.09b 0.49±0.10a 0.60±0.04ab 锌Zn 0.27±0.01 0.24±0.01 0.23±0.01 铜Cu 0.04±0.00 0.03±0.00 0.03±0.00 硒Se 0.04±0.00c 0.02±0.00b 0.02±0.00a 2.5 主成分分析
图 2所示, 本研究将111个品质指标的数据进行主成分分析。图 2a中每个箭头代表一个品质指标, 箭头与箭头之间越近表示它们之间存在正相关关系, 而箭头与箭头方向相反表示它们之间存在负相关关系。由图 2b可知, 网箱养殖、工厂化循环水养殖和流水池塘养殖三倍体虹鳟鱼肉品质轮廓差异明显, 均能独立成组。
3. 讨论
3.1 表观方面
鱼类的表观品质指标不仅取决于遗传因素, 更与其养殖环境具有紧密联系[44]。肥满度是衡量形体的重要指标, 可以一定程度反映鱼类的肥瘦程度和生长情况。出肉率是衡量鱼类生产能力的重要指标, 可以反映鱼类可食用部分的商用价值。研究表明鱼肉脂肪含量越高, 肥满度越大, 出肉率越小[45]。本研究通过主成分分析也发现脂肪含量和肥满度呈正相关, 而和出肉率呈负相关关系。在本研究中, 流水池塘养殖三倍体虹鳟出肉率具有明显优势, 可能的原因与该养殖模式下鱼呈现细长的体型, 便于鱼片剖取有关。
肉色和“大理石”纹理是感知鲑科鱼类品质的最重要属性之一, 与消费者接受或拒绝产品直接相关[46]。其中鱼类肉色可以通过色差仪L*、a*、b*值衡量, L*表示亮度值, L*值越大表明颜色越明亮; a*表示红绿程度(–a*表示绿, +a*表示红); b*表示黄蓝程度(–b*表示蓝, +b*表示黄)[44]。在本研究中, 循环水养殖的三倍体虹鳟鱼肉具有较高的红色值和黄色值, 这可能由于循环水箱内水体积较小, 饲料中色素类物质不易流失[47], 同时脂肪含量高, 有利于虾青素的沉积[24]。色度值(Cab*)表示颜色的饱和度、密度或亮度, 是颜色的强度和清晰度的表达; 色调角(Hab°)是鱼片的红色和黄色之间的关系, 红色调0°, 黄色调在90°, 绿色调在180°和蓝色调在270°[48]。一般来说, 色度值(Cab*)越大、色调角(Hab°)越大, 表示鱼肉饱和度高, 肉色偏橘。研究表明呈现高饱和度且肉色偏橘色的鲑科鱼肉更具有商业价值[49]。在本研究中, 工厂化循环水养殖和网箱养殖三倍体虹鳟鱼肉均呈现出的偏橘色, 其中网箱养殖鱼鱼肉在此基础上饱和度更高, 因此具有更高的商业价值。“大理石”纹理主要指鲑鳟鱼肉片红白相间的排布, 本研究通过测定肌间隔宽度作为衡量鱼肉白色纹理的品质指标, 结果表明不同养殖模式三倍体虹鳟鱼肉肌间隔宽度无显著差异。在陆生动物中肌间隔宽度可以在一定程度上反应动物胴体品质, 与肌肉脂肪含量呈正相关[50, 51]。本研究中网箱养殖和工厂化循环水养殖三倍体虹鳟鱼肉具有较高的脂肪含量, 但肌间隔宽度并没有增加, 可能的原因与养殖环境影响了鱼肉脂肪沉积, 需进一步研究。
3.2 肉质方面
水产品质构是鱼类组织特性的一项重要指标[52]。硬度是鲑鳟鱼肉品质的重要组成部分, 消费者倾向于坚实度较高的鱼肉[53, 54]。本研究结果表明, 网箱养殖三倍体虹鳟鱼肉的硬度、咀嚼性、内聚性、弹性最大而黏附性最小, 因此其鱼肉较为坚实。通过主成分分析发现, 三倍体虹鳟坚实度与鱼肉胶原蛋白成正相关, 与鱼肉水溶性蛋白负相关。但网箱养殖的三倍体虹鳟肌肉中羟脯氨酸含量与其他养殖模式没有显著性差异。质地的影响因素可能较多, Ma等[30]在研究大黄鱼中同样发现鱼肉坚实度与羟脯氨酸含量没有存在显著线性关系。
在鱼死后, 鱼肉中糖原无氧降解产生大量乳酸进而降低pH[55], 因此pH是判断肉质的重要指标[56]。此外, 研究表明, pH的迅速降低会显著影响鱼肉的坚韧度、持水力和感官品质[53]。本研究通过主成分分析发现鱼肉pH与糖原含量呈负相关关系, 但本研究中流水池塘养殖三倍体虹鳟肌糖原含量最高, 工厂化循环水最低, 但不同养殖模式鱼肉并未表现出pH的差异, 其原因可能与鱼肉pH的影响因素较多有关。
持水力可以体现鱼肉保持其本身水分的能力, 对鱼类的质构和风味等指标有着重要的影响[57]。持水力越高则汁液流失率、失脂率和失水率越低。研究表明, 鱼类鱼肉盐溶性蛋白含量与鱼肉保水力呈正相关[58]。本研究通过主成分分析也发现鱼肉盐溶性蛋白与汁液流失率和失水率均呈负相关关系。因此, 网箱养殖三倍体虹鳟汁液流失率和失水率较高原因可能与盐溶性蛋白含量较低相关。
3.3 气味方面
风味是鱼类品质的重要组成部分, 挥发性气味物质不仅是风味的重要组成部分, 也是鱼类品质的重要衡量标准[59]。气味的形成与人类嗅觉阈值有关。嗅觉阈值是指引起人嗅觉最小刺激的物质浓度, 嗅觉阈值越低的化合物越容易被感知, 而在挥发性气味物质中, 酮类和醛类化合物的嗅觉阈值相对较低[60], 容易被人类感知。此外研究表明, 三倍体虹鳟鱼肉中醛类物质的种类和含量都远高于其他几类物质, 可能是影响其气味的主要物质种类[1, 61]。气味活度值(OAV)用来描述单个挥发性气味物质对整体气味的贡献, 当OAV≥1时, 对鱼肉整体风味有贡献[41]。本团队之前已通过气味活度值(OAV)构建了网箱养殖三倍体虹鳟气味轮廓并确定了主体气味化合物, 主要包括醇类、酮类和醛类等21种气味活性物质[1]。本研究发现工厂化循环水养殖和流水池塘养殖三倍体虹鳟鱼肉比之前研究多了3,5-辛二烯-2-酮和2-辛烯-1-醇两种气味活性物质, 但OAV较低, 不同养殖模式三倍体虹鳟鱼肉气味仍以青绿味、脂香和果香为主。在所有气味活性物质中, 按对三倍体虹鳟气味贡献较大的前五种分别是1-辛烯-3-醇、己醛、辛醛、壬醛及(E)-2-壬烯醛, 与本团队之前所得出的结论一致[1], 通过查阅文献发现, 这些物质主要是通过油酸和亚油酸氧化裂解产生[62-64]。此外, 本研究测定鱼肉中脂肪酸组成也发现三倍体虹鳟鱼肉中油酸和亚油酸含量占总脂肪酸含量50%以上, 因此油酸和亚油酸的氧化产物可能是形成虹鳟气味的重要原因, 其作用机制有待进一步研究。本研究中流水池塘养殖三倍体虹鳟鱼肉气味活性物质的总OAV最高, 主要对鱼肉气味有贡献的物质为(E)-2-壬烯醛、辛醛、壬醛、1-辛烯-3醇和己醛, 其OAV占总值的80%以上, 主要呈现为青绿味、果香和脂香。网箱和工厂化循环水养殖三倍体虹鳟气味强度较低, 但对鱼肉整体气味有贡献的主要气味活性物质相同, 故不同养殖模式三倍体虹鳟鱼肉的气味特征一致。
3.4 营养价值方面
鱼类鱼肉营养价值主要与总蛋白含量、脂肪含量、氨基酸组成及含量、脂肪酸组成及含量、矿物元素组成及含量等有关。必需氨基酸的组成及含量对于蛋白质营养价值起重要作用, 3个养殖模式三倍体虹鳟鱼肉必需氨基酸组成相对均衡, 含量丰富, 具有较高营养价值, 为优质的动物蛋白源。在本研究中, 不同养殖模式三倍体虹鳟鱼肉中总氨基酸及总蛋白含量无显著性差异, 且含量与张殿福等[65]和朱龙等[10]研究结果相近。
脂肪含量对于鱼肉风味及适口性影响巨大[66]。而鱼肉中的不饱和脂肪酸, 尤其是n-3 PUFA包括EPA和DHA具有很多生理学功能, 例如抗心血管疾病、促进发育和免疫调节作用[67]。在本研究中, 三个养殖模式三倍体虹鳟鱼肉中MUFA含量最高, 其次是PUFA和SFA, 类似结果在Celik等[68]的研究中发现。AI和TI用于评估三倍体虹鳟鱼肉对人类心血管疾病发生的影响, AI和TI值越高, 危险性越高。在本研究中, 三组三倍体虹鳟鱼肉的AI和TI均远低于牛肉、羊肉及猪肉(AI为0.72、1.00、0.60; TI为1.06、1.58、1.37)[31], 说明三倍体虹鳟鱼肉具有较高的食用和保健价值。对比不同养殖模式发现, 工厂化循环水养殖三倍体虹鳟鱼肉中粗脂肪、TFA、SFA、MUFA、PUFA、n-3、n-6、n-3/n-6、EPA、DHA、ARA及C18: 1n-9含量最高, 其原因可能受到养殖环境的影响。由于工厂化循环水系统场地有限, 三倍体虹鳟运动受限因此脂肪更易沉积于肌肉中。脂肪酸组成与含量和张雯等[69]对养殖虹鳟的研究结果相近。
4. 结论
通过评估表观品质、肉质、气味和营养价值相关111个品质指标发现网箱养殖、工厂化循环水养殖及流水池塘养殖三倍体虹鳟鱼肉品质存在明显差异, 各具特色: 网箱养殖三倍体虹鳟鱼肉质地坚实富有弹性, 工厂化循环水养殖三倍体虹鳟具有较红的肉色并富含不饱和脂肪酸, 流水池塘养殖三倍体虹鳟形体优美且出肉率相对较高, 挥发性风味物质含量丰富。
-
表 1 试验饲料配方
Table 1 Formulation of diets used in this study (dry matter basis, g/kg)
原料成分
Ingredient composition基础饲料
Basal diet试验饲料
Test diet鱼粉Fish meala 500 350 试验蛋白原料Test ingredientb 0 300 鱼油Fish oil 20 14 大豆卵磷脂Soybean lecithin 15 10.50 豆油Soybean oil 20 14 豆粕Soybean meal 150 105 小麦谷朊粉Wheat gluten 80 56 面粉Wheat flour 183 127.8 维生素C Vitamin C (35%) 0.5 0.35 氯化胆碱Choline chloride (60%) 5 3.5 磷酸二氢钙Calcium monophosphate 15 10.5 维生素和矿物质预混料
Vitamin and mineral premixc10 7 乙氧基喹啉Ethoxyquin 0.5 0.35 氧化钇Y2O3 1 1 注: a鱼粉: 秘鲁鱼粉, 73.19%粗蛋白, 9.66%粗脂肪, 由秘鲁Tecnologica de Alimentos S.A.公司Callao工厂提供; b试验蛋白: 黄粉虫粉、黑水虻虫粉、乙醇梭菌蛋白、荚膜甲基球菌蛋白、小球藻粉、棉籽浓缩蛋白和秘鲁鱼粉; c 维生素和矿物质预混料(每kg饲料含): 维生素B1, 5 mg; 维生素B2, 10 mg; 维生素A, 5000 IU; 维生素D3, 1000 IU; 维生素E, 40 mg; 维生素K3, 10 mg; 维生素B6, 10 mg; 维生素B7, 0.1 mg; 维生素B12, 0.02 mg; 泛酸钙, 20 mg; 叶酸, 1 mg; 烟酸, 40 mg; 维生素C, 150 mg; 铁, 100 mg; 碘, 0.8 mg; 铜, 3 mg; 锌, 50 mg; 锰, 12 mg; 硒, 0.3 mg; 钴, 0.2 mg, 由北京英惠尔生物技术有限公司提供Note: a Fishmeal: Peruvian fishmeal, 73.19% crude protein, 9.66% crude lipids, provided by Tecnologica de Alimentos S.A., Callao, Peru; b Test ingredients: TMM, HIM, CAP, MCM, CVM, CPC and PFM; C Vitamin and Mineral Premix (diet/kg) includes following contents: thiamine, 5 mg; riboflavin, 10 mg; vitamin A, 5000 IU; vitamin D3, 1000 IU; vitamin E, 40 mg; menadione, 10 mg; pyridoxine, 10 mg; biotin, 0.1 mg; cyanocobalamin, 0.02 mg; calcium pantothenate, 20 mg; folic acid, 1 mg; niacin, 40 mg; vitamin C, 150 mg; iron, 100 mg; iodine, 0.8 mg; copper, 3 mg; zinc, 50 mg; manganese, 12 mg; selenium, 0.3 mg; cobalt, 0.2 mg, provided by Beijing Enhalor International Tech Co., Ltd., Beijing, China 表 2 七种试验蛋白原料的营养成分和氨基酸组成
Table 2 Proximate and amino acid compositions of test ingredients (dry matter basis, %)
营养成分
Proximate compositionTMMa HIMb CAPc MCMd CVMe CPCf PFMg 粗蛋白Crude protein 65.88 32.17 84.21 74.10 51.50 61.51 68.21 粗脂肪Crude lipids 4.19 30.00 0.19 0.69 5.50 2.36 9.00 总磷Total Phosphorus 0.35 0.79 0.92 1.49 1.21 1.68 2.59 天冬氨酸Aspartic acid 4.85 2.78 9.54 5.82 5.05 5.66 6.10 苏氨酸Threonine 2.46 1.48 4.02 2.87 2.57 1.90 2.87 丝氨酸Serine 5.74 1.36 3.21 2.20 2.04 2.65 2.61 谷氨酸Glutamic acid 7.74 4.49 9.78 7.28 6.78 12.37 8.75 甘氨酸Glycine 5.31 1.71 3.87 3.33 2.73 2.50 4.13 丙氨酸Alanine 3.13 2.24 4.63 4.70 3.93 2.36 4.42 胱氨酸Cystine 4.05 0.44 0.71 0.35 0.58 0.95 0.76 缬氨酸Valine 3.92 2.02 5.44 3.89 2.95 2.66 3.37 蛋氨酸Methionine 1.29 0.65 2.29 1.73 0.90 0.85 2.03 异亮氨酸Isoleucine 2.80 1.30 5.28 2.94 1.86 1.89 2.75 亮氨酸Leucine 5.08 2.13 6.38 5.04 4.24 3.44 5.26 酪氨酸Tyrosine 2.05 1.83 3.14 1.81 2.08 1.35 2.29 苯丙氨酸Phenylalanine 2.57 1.45 3.30 2.91 2.82 3.53 3.59 赖氨酸Lysine 4.85 1.75 8.70 3.78 3.20 2.47 5.21 组氨酸Histidine 0.90 1.06 1.68 1.42 1.29 1.80 2.07 精氨酸Arginine 3.73 1.58 3.40 4.21 3.10 7.89 4.09 脯氨酸Proline 4.43 1.89 2.40 2.52 1.99 2.17 2.84 总氨基酸Total amino acids 64.90 30.16 77.77 56.80 48.11 56.45 63.15 注: aTMM: 黄粉虫粉, 由广州泽和成生物技术有限公司提供; bHIM: 黑水虻虫粉, 由广州飞禧特生物技术有限公司提供; cCAP: 乙醇梭菌蛋白, 由河北首朗新能源技术有限公司提供; dMCM: 荚膜甲基球菌蛋白, 由美国Calysta公司提供; eCVM: 小球藻粉, 由中科院水生生物研究所(武汉)提供; fCPC: 棉籽浓缩蛋白, 由新疆金兰植物蛋白有限公司提供; gPFM: 秘鲁鱼粉, 由秘鲁Tecnologica de Alimentos S.A.公司提供Note: Tenebrio molitor meal, provided by Guangzhou Zehecheng Biotechnology Co. Ltd., Guangzhou, China; Hermetia illucens meal, provided by Guangzhou Feixite Biotechnology Co. Ltd., Guangzhou, China; Clostridium autoethanogenum protein, provided by Hebei Shoulang New Energy Technology Co. Ltd., Tangshan, China; Methylococcus capsulatus meal, provided by FeedKind, Calysta, Inc., CA, USA; Chlorella vulgaris meal, provided by Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; Cottonseed protein concentrate, provided by Xinjiang Jinlan Plant Protein Co. Ltd., Shihezi, China; Peruvian fishmeal, provided by Tecnologica de Alimentos S.A., Callao, Peru 表 3 试验饲料的营养成分和氨基酸组成
Table 3 Proximate and amino acid compositions of test diets (dry matter basis, %)
营养成分
Proximate composition基础饲料Basal diet TMM HIM CAP MCM CVM CPC PFM 干物质Dry matter 98.36 97.34 97.24 96.98 97.45 97.18 97.24 98.00 粗蛋白Crude protein 52.70 56.39 47.52 64.09 60.19 52.47 56.36 58.84 粗脂肪Crude lipids 10.57 8.30 17.32 7.46 7.61 9.16 8.15 10.29 粗灰分Crude ash 11.67 12.00 12.04 8.80 10.14 9.43 10.49 13.89 总磷Total Phosphorus 21.38 18.10 14.69 17.90 22.07 18.68 19.87 24.85 氧化钇Y2O3 (μg/g) 991.92 924.06 813.51 1026.79 1091.44 1081.91 1076.06 1042.82 天冬氨酸Aspartic acid 4.26 3.74 3.82 5.98 4.77 4.41 4.80 4.95 苏氨酸Threonine 1.98 1.73 1.81 2.84 2.32 2.16 2.04 2.22 丝氨酸Serine 2.12 1.82 1.98 2.62 2.17 2.19 2.40 2.08 谷氨酸Glutamic acid 9.15 7.93 7.67 9.23 8.98 8.42 10.49 9.18 甘氨酸Glycine 2.58 2.37 2.36 3.12 2.79 2.70 2.58 3.01 丙氨酸Alanine 2.67 2.65 2.64 3.41 3.33 3.12 2.60 3.18 胱氨酸Cystine 0.60 0.52 0.51 0.69 0.65 0.53 0.64 0.55 缬氨酸Valine 2.29 2.29 2.17 3.21 2.71 2.44 2.40 2.64 蛋氨酸Methionine 1.02 0.85 0.83 1.33 1.16 0.93 0.87 1.32 异亮氨酸Isoleucine 2.06 1.94 1.88 3.10 2.34 2.03 2.01 2.36 亮氨酸Leucine 3.71 3.24 3.29 4.67 4.12 3.96 3.70 4.16 酪氨酸Tyrosine 1.54 1.63 1.56 2.07 1.85 1.57 1.63 1.80 苯丙氨酸Phenylalanine 2.20 1.96 1.92 2.62 2.45 2.31 2.57 2.42 赖氨酸Lysine 3.23 2.75 2.75 4.70 3.44 3.14 3.11 3.88 组氨酸Histidine 1.44 1.20 1.28 1.43 1.40 1.34 1.59 1.63 精氨酸Arginine 2.92 2.46 2.44 3.03 3.29 2.95 4.55 3.20 脯氨酸Proline 2.67 2.36 2.46 2.77 2.61 2.54 2.51 2.68 总氨基酸Total amino acids 46.43 41.43 41.39 56.81 50.36 46.74 50.51 51.27 表 4 试验蛋白原料的干物质、粗蛋白和粗脂肪的表观消化率
Table 4 Apparent digestibility coefficients for DM, CP and CL of test ingredients (%)
TMM HIM CAP MCM CVM CPC PFM 干物质Dry matter 63.07±4.15ab 55.39±5.61b 58.65±4.90ab 53.9±3.70b 68.74±2.66a 58.22±3.64ab 53.25±1.99b 粗蛋白Crude protein 77.48±0.27e 55.49±0.50f 85.46±0.85b 82.78±0.14c 90.94±0.70a 80.09±0.43d 81.06±0.08d 粗脂肪Crude lipids 87.61±1.18a 85.92±1.59a 82.17±2.78a 67.97±1.91b 50.95±2.97c 62.55±4.17b 80.89±1.92a 注: 平均值±标准差(n=3); 相同字母上标或同一行无字母上标表示无显著差异(P>0.05), 不同字母表示存在显著差异(P<0.05), 下同Note: Mean values±SD are presented for each group (n=3). The superscript in the same line or no superscript means no significant difference (P>0.05), values with different superscripts in the same row mean significant difference (P<0.05). The same applies below 表 5 试验蛋白原料的氨基酸表观消化率
Table 5 Apparent digestibility coefficients for amino acids of test ingredients (%)
TMM HIM CAP MCM CVM CPC PFM 精氨酸Arginine 68.22±0.58e 81.18±2.92d 88.36±1.36b 86.41±0.83bc 92.44±0.80a 94.12±0.08a 83.66±0.67cd 组氨酸Histidine 70.94±1.15d 60.10±1.24e 87.37±0.06c 96.05±0.01ab 94.24±1.43b 87.50±0.96c 96.40±0.16a 异亮氨酸Isoleucine 68.71±2.30e 72.34±0.78d 88.38±0.20a 79.60±1.94c 88.10±0.31a 72.83±0.14d 83.62±0.47b 亮氨酸Leucine 62.25±0.73e 73.96±0.80d 90.06±1.10a 80.31±1.11c 88.97±0.20a 74.21±0.33d 85.92±0.59b 赖氨酸Lysine 79.00±0.61d 73.19±1.45e 93.19±0.18a 88.09±0.20c 86.58±0.85c 68.63±0.60f 90.32±0.11b 蛋氨酸Methionine 80.45±1.12cd 83.17±3.04bc 82.13±1.49bc 77.04±1.87de 90.66±2.12a 74.55±2.50e 86.01±1.77ab 苯丙氨酸Phenylalanine 65.82±0.60e 76.71±2.17c 76.74±1.23c 68.21±1.46e 87.65±0.23a 83.79±0.92b 71.29±0.20d 苏氨酸Threonine 57.06±1.04e 74.77±3.71c 90.18±0.12a 81.77±1.15b 91.12±0.69a 70.78±1.29d 82.54±1.33b 缬氨酸Valine 62.90±2.04e 67.11±1.79d 87.11±0.55a 81.83±0.40b 88.91±0.45a 76.45±0.52c 80.85±1.25b 天冬氨酸Aspartic acid 68.27±0.35d 76.44±1.23c 90.95±0.12a 83.13±0.18b 93.4±0.69a 83.54±0.59b 83.28±0.52b 谷氨酸Glutamic acid 74.03±0.53g 77.84±0.79f 89.72±0.33c 88.07±0.74d 95.91±0.58a 91.87±0.27b 85.19±0.77e 丙氨酸Alanine 72.26±1.17d 71.34±0.72de 86.94±0.73b 84.41±0.18c 92.27±0.80a 70.13±0.43e 83.50±1.14c 胱氨酸Cystine 75.92±0.65cd 72.77±1.66d 79.55±0.58bc 82.21±3.74b 87.75±0.92a 83.57±1.61ab 62.97±1.78e 甘氨酸Glycine 62.95±0.57e 52.26±2.05f 84.38±0.64b 74.06±0.28d 96.5±1.34a 80.03±0.50c 77.83±0.80c 脯氨酸Proline 51.79±1.19f 69.83±1.50e 87.99±0.47b 82.09±1.91c 94.82±0.93a 81.66±1.39c 77.28±1.78d 丝氨酸Serine 51.26±1.55e 76.81±2.97d 89.4±1.05b 79.32±2.09cd 93.68±0.51a 81.94±0.35c 78.08±2.24cd 酪氨酸Tyrosine 71.31±1.30c 70.76±2.24c 81.23±0.96b 62.81±0.30d 87.91±0.57a 81.8±0.83b 62.75±2.28d 总氨基酸Total amino acids 67.72±0.48f 72.53±1.10e 88.08±0.17b 81.84±0.24d 91.71±0.54a 83.71±0.20c 82.39±0.35d -
[1] 陆泽峰, 黄和, 黄湘湄, 等. 低氧胁迫对珍珠龙胆石斑鱼氧化应激及能量代谢的影响 [J]. 广东海洋大学学报, 2022, 42(1): 13-19. doi: 10.3969/j.issn.1673-9159.2022.01.003 Lu Z F, Huang H, Huang X M, et al. Effects of hypoxic stress on antioxidant and energy metabolism of hybrid grouper (Epinephelus fuscoguttatus♀×Epinephelus lanceolatus♂) [J]. Journal of Guangdong Ocean University, 2022, 42(1): 13-19. doi: 10.3969/j.issn.1673-9159.2022.01.003
[2] 范秀萍, 秦小明, 章超桦, 等. 珍珠龙胆石斑鱼肌肉营养成分与挥发性风味成分的分析与评价 [J]. 广东海洋大学学报, 2018, 38(1): 39-46. doi: 10.3969/j.issn.1673-9159.2018.01.006 Fan X P, Qin X M, Zhang C H, et al. Nutritional and volatile flavor components of dorsal and ventral muscle from hybrid grouper (Epinephelus fuscoguttatus♀×E. lanceolatus♂) [J]. Journal of Guangdong Ocean University, 2018, 38(1): 39-46. doi: 10.3969/j.issn.1673-9159.2018.01.006
[3] Wang J, Liang D, Yang Q, et al. The effect of partial replacement of fish meal by soy protein concentrate on growth performance, immune responses, gut morphology and intestinal inflammation for juvenile hybrid grouper (Epinephelus fuscoguttatus♀×Epinephelus lanceolatus♂) [J]. Fish & Shellfish Immunology, 2020(98): 619-631.
[4] Ye G, Dong X, Yang Q, et al. Low-gossypol cottonseed protein concentrate used as a replacement of fish meal for juvenile hybrid grouper (Epinephelus fuscoguttatus♀×E. lanceolatus♂): Effects on growth performance, immune responses and intestinal microbiota [J]. Aquaculture, 2020(524): 735309.
[5] 徐闪浪, 黄和, 高平, 等. 喹哪啶在珍珠龙胆石斑鱼体内的残留消除规律 [J]. 广东海洋大学学报, 2021, 41(6): 18-24. doi: 10.3969/j.issn.1673-9159.2021.06.003 Xu S L, Huang H, Gao P, et al. Residue and elimination of quinalidine in pearl gentian grouper [J]. Journal of Guangdong Ocean University, 2021, 41(6): 18-24. doi: 10.3969/j.issn.1673-9159.2021.06.003
[6] Li B S, Han X J, Wang J Y, et al. Optimal dietary methionine requirement for juvenile sea cucumber Apostichopus japonicus selenka [J]. Aquaculture Research, 2021, 52(4): 1348-1358. doi: 10.1111/are.14989
[7] Michelato M, Vidal L V O, Xavier T O, et al. Dietary threonine requirement to optimize protein retention and fillet production of fast-growing Nile tilapia [J]. Aquaculture Nutrition, 2016, 22(4): 759-766. doi: 10.1111/anu.12293
[8] Helland S J, Grisdale-Helland B. Dietary threonine requirement of Atlantic salmon smolts [J]. Aquaculture, 2011, 321(3-4): 230-236. doi: 10.1016/j.aquaculture.2011.09.008
[9] Chen T, Liu C, Lin K, et al. The experiment for the development of artificial diet for salmon-like grouper Epinephelus salmonoides experiment of the nutrition requirement and rearing study by feeding with artificial diet [J]. Bulletin of Taiwan Fisheries Research Institute, 1987(43): 300-317.
[10] 王大鹏, 曹占旺, 谢达祥, 等. 石斑鱼的研究进展 [J]. 南方农业学报, 2012, 43(7): 1058-1065. doi: 10.3969/j:issn.2095-1191.2012.07.1058 Wang D P, Cao Z W, Xie D X, et al. Research progress in epinephelus industry [J]. Guangxi Agricultural Sciences, 2012, 43(7): 1058-1065. doi: 10.3969/j:issn.2095-1191.2012.07.1058
[11] Cao L, Naylor R, Henriksson P, et al. China’s aquaculture and the world’s wild fisheries [J]. Science, 2015, 347(6218): 133-135. doi: 10.1126/science.1260149
[12] Tomás-Vidal A, Monge-Ortiz R, Jover-Cerdá M, et al. Apparent digestibility and protein quality evaluation of selected feed ingredients in Seriola dumerili [J]. Journal of the World Aquaculture Society, 2019, 50(4): 842-855. doi: 10.1111/jwas.12597
[13] Yao W, Wu X, Gao Y, et al. Effects of replacing fishmeal protein by hemoglobin powder protein on growth performance, food intake, feeding-related gene expression and gut histology of hybrid grouper (Epinephelus fuscoguttatus♀×Epinephelus lanceolatus♂) juveniles [J]. Aquaculture, 2018(488): 235-243.
[14] Irm M, Taj S, Jin M, et al. Effects of replacement of fish meal by poultry by-product meal on growth performance and gene expression involved in protein metabolism for juvenile black sea bream (Acanthoparus schlegelii) [J]. Aquaculture, 2020(528): 735544. doi: 10.1016/j.aquaculture.2020.735544
[15] Bu X, Chen A, Lian X, et al. An evaluation of replacing fish meal with cottonseed meal in the diet of juvenile Ussuri catfish Pseudobagrus ussuriensis: growth, antioxidant capacity, nonspecific immunity and resistance to Aeromonas hydrophila [J]. Aquaculture, 2017(479): 829-837.
[16] Novriadi R. A Meta-analysis approach toward fish meal replacement with fermented soybean meal: effects on fish growth performance and feed conversion ratio [J]. Asian Fisheries Science, 2017, 30(4): 227-244.
[17] Nhi N H Y, Da C T, Lundh T, et al. Comparative evaluation of brewer’s yeast as a replacement for fishmeal in diets for tilapia (Oreochromis niloticus), reared in clear water or biofloc environments [J]. Aquaculture, 2018(495): 654-660. doi: 10.1016/j.aquaculture.2018.06.035
[18] Song S G, Chi S Y, Tan B P, et al. Effects of fishmeal replacement by Tenebrio molitor meal on growth performance, antioxidant enzyme activities and disease resistance of the juvenile pearl gentian grouper (Epinephelus fuscoguttatus♀×Epinephelus lanceolatus♂) [J]. Aquaculture Research, 2018, 49(6): 2210-2217. doi: 10.1111/are.13677
[19] Belghit I, Liland N S, Gjesdal P, et al. Black soldier fly larvae meal can replace fish meal in diets of sea-water phase Atlantic salmon (Salmo salar) [J]. Aquaculture, 2019(503): 609-619.
[20] Raji A A, Alaba P A, Yusuf H, et al. Fishmeal replacement with Spirulina platensis and Chlorella vulgaris in African catfish (Clarias gariepinus) diet: effect on antioxidant enzyme activities and haematological parameters [J]. Research in Veterinary Science, 2018(119): 67-75. doi: 10.1016/j.rvsc.2018.05.013
[21] Chen Y, Sagada G, Xu B, et al. Partial replacement of fishmeal with Clostridium autoethanogenum single-cell protein in the diet for juvenile black sea bream (Acanthopagrus schlegelii) [J]. Aquaculture Research, 2020, 51(3): 1000-1011. doi: 10.1111/are.14446
[22] Chen Y K, Chi S Y, Zhang S, et al. Replacement of fish meal with Methanotroph (Methylococcus capsulatus, Bath) bacteria meal in the diets of Pacific white shrimp (Litopenaeus vannamei) [J]. Aquaculture, 2021(541): 736801.
[23] T. Veldkamp, G Van Duinkerken, A Van Huis, et al. Insects as a sustainable feed ingredient in pig and poultry diets: a feasibility study insecten als duurzame diervoedergrondstof in varkens-en pluimveevoeders: een haalbaarheidsstudie [R]. Wageningen UR Livestock Research, 2012.
[24] Henry M, Gasco L, Piccolo G, et al. Review on the use of insects in the diet of farmed fish: past and future [J]. Animal Feed Science and Technology, 2015(203): 1-22.
[25] Ng W K, Liew F L, Ang L P, et al. Potential of mealworm (Tenebrio molitor) as an alternative protein source in practical diets for African catfish, Clarias gariepinus [J]. Aquaculture Research, 2001(32): 273-280.
[26] Diener S, Zurbrügg C, Tockner K. Conversion of organic material by black soldier fly larvae: establishing optimal feeding rates [J]. Waste Management & Research, 2009, 27(6): 603-610.
[27] Zheng L, Li Q, Zhang J, et al. Double the biodiesel yield: rearing black soldier fly larvae, Hermetia illucens, on solid residual fraction of restaurant waste after grease extraction for biodiesel production [J]. Renewable Energy, 2012(41): 75-79.
[28] Newton G, Sheppard D, Watson D, et al. The Black Soldier Fly, Hermetia illucens, as a Manure Management/Resource Recovery Tool [C]. Symposium on the State of the Science of Animal Manure and Waste Management, 2005: 5-7.
[29] Zhou F, Tomberlin J K, Zheng L, et al. Developmental and waste reduction plasticity of three black soldier fly strains (Diptera: Stratiomyidae) raised on different livestock manures [J]. Journal of Medical Entomology, 2013, 50(6): 1224-1230. doi: 10.1603/ME13021
[30] Cerezuela R, Guardiola F A, González P, et al. Effects of dietary Bacillus subtilis, Tetraselmis chuii, and Phaeodactylum tricornutum, singularly or in combination, on the immune response and disease resistance of sea bream (Sparus aurata L.) [J]. Fish & Shellfish Immunology, 2012, 33(2): 342-349.
[31] Güroy D, Güroy B, Merrifield D L, et al. Effect of dietary Ulva and Spirulina on weight loss and body composition of rainbow trout, Oncorhynchus mykiss (Walbaum), during a starvation period [J]. Journal of Animal Physiology and Animal Nutrition, 2011, 95(3): 320-327. doi: 10.1111/j.1439-0396.2010.01057.x
[32] Greenwell H C, Laurens L M, Shields R J, et al. Placing microalgae on the biofuels priority list: a review of the technological challenges [J]. Journal of the Royal Society Interface, 2010, 7(46): 703-726. doi: 10.1098/rsif.2009.0322
[33] Xu W, Gao Z, Qi Z, et al. Effect of dietary Chlorella on the growth performance and physiological parameters of gibel carp, Carassius auratus gibelio [J]. Turkish Journal of Fisheries and Aquatic Sciences, 2014, 14(1): 53-57.
[34] Henry E C. The use of algae in fish feeds as alternatives to fishmeal [J]. Int Aquafeed, 2012, 2012: 8p.
[35] Walker A B, Berlinsky D L. Effects of partial replacement of fish meal protein by microalgae on growth, feed intake, and body composition of Atlantic cod [J]. North American Journal of Aquaculture, 2011, 73(1): 76-83.
[36] Nandeesha M C, Gangadhara B, Manissery J K, et al. Growth performance of two Indian major carps, catla (Catla catla) and rohu (Labeo rohita) fed diets containing different levels of Spirulina platensis [J]. Bioresource Technology, 2001, 80(2): 117-120. doi: 10.1016/S0960-8524(01)00085-2
[37] Xu D, He G, Mai K, et al. Postprandial nutrient-sensing and metabolic responses after partial dietary fishmeal replacement by soyabean meal in turbot (Scophthalmus maximus L.) [J]. British Journal of Nutrition, 2016, 115(3): 379-388. doi: 10.1017/S0007114515004535
[38] Zhou Q L, Habte-Tsion H M, Ge X, et al. Graded replacing fishmeal with canola meal in diets affects growth and target of rapamycin pathway gene expression of juvenile blunt snout bream, Megalobrama amblycephala [J]. Aquaculture Nutrition, 2018, 24(1): 300-309. doi: 10.1111/anu.12560
[39] Gerasimidis K, Fillou D T, Babatzimcpoulou M, et al. Preparation of an edible cottonseed protein concentrate and evaluation of its functional properties [J]. International Journal of Food Sciences and Nutrition, 2007, 58(6): 486-490. doi: 10.1080/09637480701288488
[40] Robinson E H, Li M H. Use of plant proteins in catfish feeds: replacement of soybean meal with cottonseed meal and replacement of fish meal with soybean meal and cottonseed meal [J]. Journal of the World Aquaculture Society, 1994, 25(2): 271-276. doi: 10.1111/j.1749-7345.1994.tb00190.x
[41] Yin B, Liu H Y, Tan B P, et al. Cottonseed protein concentrate (CPC) suppresses immune function in different intestinal segments of hybrid grouper (Epinephelus fuscoguttatus♀×Epinephelus lanceolatus♂) via TLR-2/MyD88 signaling pathways [J]. Fish & Shellfish Immunology, 2018(81): 318-328.
[42] Anderson A D, Alam M S, Watanabe W O, et al. Full replacement of menhaden fish meal protein by low-gossypol cottonseed flour protein in the diet of juvenile black sea bass Centropristis striata [J]. Aquaculture, 2016(464): 618-628.
[43] Alam M S, Watanabe W O, Carroll P M, et al. Evaluation of genetically-improved (glandless) and genetically-modified low-gossypol cottonseed meal as alternative protein sources in the diet of juvenile southern flounder Paralichthys lethostigma reared in a recirculating aquaculture system [J]. Aquaculture, 2018(489): 36-45.
[44] Zhu S, Gao W, Wen Z, et al. Partial substitution of fish meal by Clostridium autoethanogenum protein in the diets of juvenile largemouth bass (Micropterus salmoides) [J]. Aquaculture Reports, 2022(22): 100938.
[45] Yao W X, Yang P X, Zhang X, et al. Effects of replacing dietary fish meal with Clostridium autoethanogenum protein on growth and flesh quality of Pacific white shrimp (Litopenaeus vannamei) [J]. Aquaculture, 2022(549): 737770.
[46] Øverland M, Tauson A-H, Shearer K, et al. Evaluation of methane-utilising bacteria products as feed ingredients for monogastric animals [J]. Archives of Animal Nutrition, 2010, 64(3): 171-189. doi: 10.1080/17450391003691534
[47] Marit Berge G, Baeverfjord G, Skrede A, et al. Bacterial protein grown on natural gas as protein source in diets for Atlantic salmon, Salmo salar, in saltwater [J]. Aquaculture, 2005, 244(1-4): 233-240. doi: 10.1016/j.aquaculture.2004.11.017
[48] Hardy, Ronald, W. Understanding and using apparent digestibility coefficients in fish nutrition [J]. Aquaculture Magazine, 1997.
[49] Davies S J, Gouveia A. Comparison of yttrium and chromic oxides as inert dietary markers for the estimation of apparent digestibility coefficients in mirror carp Cyprinus carpio fed on diets containing soybean-, maize- and fish-derived proteins [J]. Aquaculture Nutrition, 2006, 12(6): 451-458. doi: 10.1111/j.1365-2095.2006.00448.x
[50] National R C. Nutrient Requirements of Fish and Shrimp [M]. Washington, D. C.: National Academy Press, 2011. 207-209.
[51] Ahmed I, Khan M A, Jafri A K. Dietary threonine requirement of fingerling Indian major carp, Cirrhinus mrigala (Hamilton) [J]. Aquaculture Research, 2004, 35(2): 162-170. doi: 10.1111/j.1365-2109.2004.00997.x
[52] Budavari S, O’neil M J, Smith A, et al. The merck index [M]. 11. Merck Rahway, NJ, 1989.
[53] Lee S, Chowdhury M K, Hardy R W, et al. Apparent digestibility of protein, amino acids and gross energy in rainbow trout fed various feed ingredients with or without protease [J]. Aquaculture, 2020(524): 735270.
[54] Cheng Z J, Hardy R W. Effects of extrusion processing of feed ingredients on apparent digestibility coefficients of nutrients for rainbow trout (Oncorhynchus mykiss) [J]. Aquaculture Nutrition, 2003, 9(2): 77-83. doi: 10.1046/j.1365-2095.2003.00226.x
[55] Wu X Y, Liu Y J, Tian L X, et al. Apparent digestibility coefficients of selected feed ingredients for yellowfin seabream, Sparus latus [J]. Journal of the World Aquaculture Society, 2006, 37(3): 237-245. doi: 10.1111/j.1749-7345.2006.00034.x
[56] 刘泓宇, 李立贤, Ayiku S, 等. 酵母培养物对珍珠龙胆石斑鱼生长性能, 肠道形态, 免疫功能和抗病力的影响 [J]. 广东海洋大学学报, 2021, 41(3): 1-11. doi: 10.3969/j.issn.1673-9159.2021.03.001 Liu H Y, Li L X, Ayiku S, et al. Effects of dietary yeast culture supplementation on growth, intestinal morphology, immunity, and disease resistance in Epinephelus fuscoguttatus♀×Epinephelus lanceolatu♂ [J]. Journal of Guangdong Ocean University, 2021, 41(3): 1-11. doi: 10.3969/j.issn.1673-9159.2021.03.001
[57] Association of Official Analytical Chemists. Official Methods of Analysis [S]. AOAC, Washington, D. C., 1999.
[58] Cho C Y, Kaushik S J. Nutritional energetics in fish: energy and protein utilization in rainbow trout (Salmo gairdneri) [J]. Aspects of Food Production, Consumption and Energy Values, 1990(61): 132-172.
[59] Glencross B D, Booth M, Allan G L. A feed is only as good as its ingredients-a review of ingredient evaluation strategies for aquaculture feeds [J]. Aquaculture Nutrition, 2007, 13(1): 17-34. doi: 10.1111/j.1365-2095.2007.00450.x
[60] Cho C. Apparent digestibility measurement in feedstuffs for rainbow trout [C]//Proc. World Symp. on Finfish Nutrition and Fishfeed Technology Vol. II, 1979: 239-247.
[61] Brunson J F, Romaire R P, Reigh R C. Apparent digestibility of selected ingredients in diets for white shrimp Penaeus setiferus L. [J]. Aquaculture Nutrition, 1997, 3(1): 9-16. doi: 10.1046/j.1365-2095.1997.00068.x
[62] Raji A A, Jimoh W A, Bakar N A, et al. Dietary use of Spirulina (Arthrospira) and Chlorella instead of fish meal on growth and digestibility of nutrients, amino acids and fatty acids by African catfish [J]. Journal of Applied Phycology, 2020, 32(3): 1763-1770. doi: 10.1007/s10811-020-02070-y
[63] Batista S, Pintado M, Marques A, et al. Use of technological processing of seaweed and microalgae as strategy to improve their apparent digestibility coefficients in European seabass (Dicentrarchus labrax) juveniles [J]. Journal of Applied Phycology, 2020, 32(5): 3429-3446. doi: 10.1007/s10811-020-02185-2
[64] Tibbetts S M, Mann J, Dumas A. Apparent digestibility of nutrients, energy, essential amino acids and fatty acids of juvenile Atlantic salmon (Salmo salar L.) diets containing whole-cell or cell-ruptured Chlorella vulgaris meals at five dietary inclusion levels [J]. Aquaculture, 2017(481): 25-39.
[65] Li M H, Oberle D F, Lucas P M. Apparent digestibility of alternative plant‐protein feedstuffs for channel catfish, Ictalurus punctatus (Rafinesque) [J]. Aquaculture Research, 2013, 44(2): 282-288. doi: 10.1111/j.1365-2109.2011.03035.x
[66] Robaina L, Moyano F, Izquierdo M S, et al. Corn gluten and meat and bone meals as protein sources in diets for gilthead seabream (Sparus aurata): nutritional and histological implications [J]. Aquaculture, 1997, 157(3-4): 347-359. doi: 10.1016/S0044-8486(97)00174-9
[67] Köprücü K, Özdemir Y. Apparent digestibility of selected feed ingredients for Nile tilapia (Oreochromis niloticus) [J]. Aquaculture, 2005, 250(1-2): 308-316. doi: 10.1016/j.aquaculture.2004.12.003
[68] Dumas A, Raggi T, Barkhouse J, et al. The oil fraction and partially defatted meal of black soldier fly larvae (Hermetia illucens) affect differently growth performance, feed efficiency, nutrient deposition, blood glucose and lipid digestibility of rainbow trout (Oncorhynchus mykiss) [J]. Aquaculture, 2018(492): 24-34.
[69] Renna M, Schiavone A, Gai F, et al. Evaluation of the suitability of a partially defatted black soldier fly (Hermetia illucens L.) larvae meal as ingredient for rainbow trout (Oncorhynchus mykiss Walbaum) diets [J]. Journal of Animal Science and Biotechnology, 2017, 8(1): 1-13. doi: 10.1186/s40104-016-0130-8
[70] Storebakken T, Kvien I S, Shearer K D, et al. The apparent digestibility of diets containing fish meal, soybean meal or bacterial meal fed to Atlantic salmon (Salmo salar): evaluation of different faecal collection methods [J]. Aquaculture, 1998, 169(3-4): 195-210. doi: 10.1016/S0044-8486(98)00379-2
[71] 王文娟. 斜带石斑鱼, 军曹鱼和凡纳滨对虾对常用饲料原料表观消化率的研究 [D]. 湛江: 广东海洋大学, 2012. Wang W J. Apparent digestibility of selected feed ingredients for Epinephelus coioides, Rachycentron canadum and Litopenaeus vannamei [D]. Zhanjiang: Guangdong Ocean University, 2012.
[72] Goddard S, Halver J E, Hardy R W. Book Review: Fish Nutrition: Commercial Fish and Shellfish Technologies Program [M]. Virginia, Tech, 2003.
[73] Veldkamp T, Bosch G. Insects: a protein-rich feed ingredient in pig and poultry diets [J]. Animal Frontiers, 2015, 5(2): 45-50.
[74] Belforti M, Gai F, Lussiana C, et al. Tenebrio molitor meal in rainbow trout (Oncorhynchus mykiss) diets: effects on animal performance, nutrient digestibility and chemical composition of fillets [J]. Italian Journal of Animal Science, 2015, 14(4): 4170. doi: 10.4081/ijas.2015.4170
[75] Bovera F, Loponte R, Marono S, et al. Use of Tenebrio molitor larvae meal as protein source in broiler diet: Effect on growth performance, nutrient digestibility, and carcass and meat traits [J]. Journal of Animal Science, 2016, 94(2): 639-647. doi: 10.2527/jas.2015-9201
[76] Sánchez-Muros M J, Barroso F G, Manzano-Agugliaro F. Insect meal as renewable source of food for animal feeding: a review [J]. Journal of Cleaner Production, 2014(65): 16-27. doi: 10.1016/j.jclepro.2013.11.068
[77] Longvah T, Mangthya K, Ramulu P. Nutrient composition and protein quality evaluation of eri silkworm (Samia ricinii) prepupae and pupae [J]. Food Chemistry, 2011, 128(2): 400-403. doi: 10.1016/j.foodchem.2011.03.041
[78] Huang B C, Zhang S, Dong X H, et al. Effects of fishmeal replacement by black soldier fly on growth performance, digestive enzyme activity, intestine morphology, intestinal flora and immune response of pearl gentian grouper (Epinephelus fuscoguttatus♀×Epinephelus lanceolatus♂) [J]. Fish & Shellfish Immunology, 2022(120): 497-506.
[79] 房进广, 梁旭方, 刘立维, 等. 麦瑞加拉鲮幼鱼对12种原料表观消化率的比较研究 [J]. 水生生物学报, 2016, 40(6): 1178-1186. doi: 10.7541/2016.153 Fang J G, Liang X F, Liu L W, et al. Comparative research on apparent digestibility of twelve ingredients for juvenile Cirrhinus mrigala [J]. Acta Hydrobiologica Sinica, 2016, 40(6): 1178-1186. doi: 10.7541/2016.153
[80] Austreng E, Refstie T. Effect of varying dietary protein level in different families of rainbow trout [J]. Aquaculture, 1979, 18(2): 145-156. doi: 10.1016/0044-8486(79)90027-9
[81] Mcgoogan B B, Reigh R C. Apparent digestibility of selected ingredients in red drum (Sciaenops ocellatus) diets [J]. Aquaculture, 1996, 141(3-4): 233-244. doi: 10.1016/0044-8486(95)01217-6
[82] Santinha P J M, Gomes E F S, Coimbra J O. Effects of protein level of the diet on digestibility and growth of gilthead sea bream, Sparus auratus L. [J]. Aquaculture Nutrition, 1996, 2(2): 81-87. doi: 10.1111/j.1365-2095.1996.tb00012.x
[83] Usmani N, Khalil Jafri A, Afzal Khan M. Nutrient digestibility studies in Heteropneustes fossilis (Bloch), Clarias batrachus (Linnaeus) and C. gariepinus (Burchell) [J]. Aquaculture Research, 2003, 34(14): 1247-1253. doi: 10.1046/j.1365-2109.2003.00930.x
[84] Zhou Q C, Yue Y R. Apparent digestibility coefficients of selected feed ingredients for juvenile hybrid tilapia, Oreochromis niloticus×Oreochromis aureus [J]. Aquaculture Research, 2012, 43(6): 806-814. doi: 10.1111/j.1365-2109.2011.02892.x
[85] Kroeckel S, Harjes A G E, Roth I, et al. When a turbot catches a fly: evaluation of a pre-pupae meal of the black soldier fly (Hermetia illucens) as fish meal substitute-growth performance and chitin degradation in juvenile turbot (Psetta maxima) [J]. Aquaculture, 2012(364): 345-352.
[86] Piccolo G, Iaconisi V, Marono S, et al. Effect of Tenebrio molitor larvae meal on growth performance, in vivo nutrients digestibility, somatic and marketable indexes of gilthead sea bream (Sparus aurata) [J]. Animal Feed Science and Technology, 2017(226): 12-20.
[87] Portz L, Cyrino J E P. Digestibility of nutrients and amino acids of different protein sources in practical diets by largemouth bass Micropterus salmoides (Lacepéde, 1802) [J]. Aquaculture Research, 2004, 35(4): 312-320. doi: 10.1111/j.1365-2109.2004.00984.x
[88] Che J, Su B, Tang B, et al. Apparent digestibility coefficients of animal and plant feed ingredients for juvenile Pseudobagrus ussuriensis [J]. Aquaculture Nutrition, 2017, 23(5): 1128-1135. doi: 10.1111/anu.12481
[89] Lin H Z, Liu Y J, Tian L X, et al. Apparent digestibility coefficients of various feed ingredients for grouper Epinephelus coioides [J]. Journal of the World Aquaculture Society, 2004, 35(2): 134-142. doi: 10.1111/j.1749-7345.2004.tb01069.x
[90] Austreng E, Skrede A, Eldegard Å. Digestibility of fat and fatty acids in rainbow trout and mink [J]. Aquaculture, 1980, 19(1): 93-95. doi: 10.1016/0044-8486(80)90010-1
[91] Li M, Liang H, Xie J, et al. Diet supplemented with a novel Clostridium autoethanogenum protein have a positive effect on the growth performance, antioxidant status and immunity in juvenile Jian carp (Cyprinus carpio var. Jian) [J]. Aquaculture Reports, 2021(19): 100572.
[92] 魏洪城, 郁欢欢, 陈晓明, 等. 乙醇梭菌蛋白替代豆粕对草鱼生长性能、血浆生化指标及肝胰脏和肠道组织病理的影响 [J]. 动物营养学报, 2018, 30(10): 4190-4201. doi: 10.3969/j.issn.1006-267x.2018.10.045 Wei H C, Yu H H, Chen X M, et al. Effects of soybean meal replaced by Clostridium autoethanogenum protein on growth performance, plasma biochemical indexes and hepatopancreas and intestinal histopathology of grass carp (Ctenopharyngodon idllus) [J]. Chinese Journal of Animal Nutrition, 2018, 30(10): 4190-4201. doi: 10.3969/j.issn.1006-267x.2018.10.045
[93] Small B C, Soares J H. Quantitative dietary lysine requirement of juvenile striped bass Morone saxatilis [J]. Aquaculture Nutrition, 2000, 6(4): 207-212. doi: 10.1046/j.1365-2095.2000.00140.x
[94] Øverland M, Skrede A, Matre T. Bacterial protein grown on natural gas as feed for pigs [J]. Acta Agriculturae Scandinavica, Section A-Animal Science, 2001, 51(2): 97-106. doi: 10.1080/090647001750193422
[95] Abimorad E G, Squassoni G H, Carneiro D J. Apparent digestibility of protein, energy, and amino acids in some selected feed ingredients for pacu Piaractus mesopotamicus [J]. Aquaculture nutrition, 2008, 14(4): 374-380. doi: 10.1111/j.1365-2095.2007.00544.x
[96] Vidakovic A, Huyben D, Sundh H, et al. Growth performance, nutrient digestibility and intestinal morphology of rainbow trout (Oncorhynchus mykiss) fed graded levels of the yeasts Saccharomyces cerevisiae and Wickerhamomyces anomalus [J]. Aquaculture Nutrition, 2020, 26(2): 275-286. doi: 10.1111/anu.12988
[97] Craig S, Helfrich L A, Kuhn D, et al. Understanding Fish Nutrition, Feeds, and Feeding [C]. Virginia Polytechnic Institute and State University, 2017: 1-6.
-
期刊类型引用(12)
1. 喻亚丽,李清,张浪,孙艳红,鲁晓蓉,魏辉杰,陈见,李佩,高银爱,王贵英. 短期微流水处理对池塘养殖杂交鲌“先锋1号”肌肉品质的影响. 渔业科学进展. 2024(02): 245-256 . 百度学术
2. 龚雅婷,王兰梅,朱文彬,傅建军,罗明坤,董在杰. 不同体色福瑞鲤2号的肌肉品质. 水产学报. 2024(04): 289-297 . 百度学术
3. 宁可源,李永雄,玄一凡,梁萧,王茂林,王伟. 海水驯化对鲟肌肉品质的影响研究. 水产养殖. 2024(07): 11-14 . 百度学术
4. 陈丽霞,曹嵩靖,孟玉琼,孙国梁,李长忠,马睿. 饲料蛋白质和脂肪水平对三倍体虹鳟生长性能、生理代谢和感官品质的影响. 水生生物学报. 2024(08): 1279-1291 . 本站查看
5. 李积萍,刘扬,王辰,陶馨,都慧芳,李月. 三倍体虹鳟幼鱼对过饱和总溶解气体的耐受能力. 水产学杂志. 2024(04): 1-8 . 百度学术
6. 汤伟,王祺,李佳欣,张军,吴春光,何增国. 饲料中添加褐藻寡糖、红藻寡糖对虹鳟生长性能、肌肉营养成分及血清免疫功能的影响. 农业生物技术学报. 2024(09): 2100-2111 . 百度学术
7. 刘阳,马睿,田海宁,管玲玲,刘小红,姜晓明,孟玉琼. 不同规格三倍体虹鳟鱼肉品质差异的研究. 淡水渔业. 2024(05): 69-80 . 百度学术
8. 王英英,马睿,武泽众,田海宁,姜晓明,孟玉琼. 三倍体虹鳟鱼片不同部位品质差异. 广东海洋大学学报. 2024(05): 76-84 . 百度学术
9. 李温蓉,安玥琦,陶玲,温利,刘茹,李谷,熊善柏. 传统养殖与组合湿地-池塘循环水养殖黄颡鱼的品质比较. 现代食品科技. 2023(05): 14-24 . 百度学术
10. 冉鹏程,赵松龄,李选凯,刘巧,赵柳兰,杨淞. 鱼肉品质评价及改善研究进展. 水产养殖. 2023(06): 14-19 . 百度学术
11. 任艳丽,罗杰儿,王人开,周芷晴,吴紫倩,谢瑞涛,杨远廷,周萌,舒绪刚. 不同锌源对珍珠龙胆石斑鱼肠道形态、消化酶、抗氧化能力以及全鱼矿物元素沉积的影响. 广东饲料. 2023(05): 31-34 . 百度学术
12. 武燕霓,安玥琦,熊善柏. 鱼汤风味的形成与调控研究进展. 食品科学. 2023(15): 251-260 . 百度学术
其他类型引用(4)
计量
- 文章访问数: 1247
- HTML全文浏览量: 720
- PDF下载量: 45
- 被引次数: 16