STOCKING DENSITY ON WATER QUALITY AND NUTRITIONAL QUALITY OF ANGUILLA JAPONICA IN SUMMER AND AUTUMN
-
摘要:
研究以日本鳗鲡(Anguilla japonica)为研究对象, 分夏秋两季, 调查并讨论了放养密度对养殖鱼水质和营养品质变化的影响。夏季低密度组放养密度分别为1.51 (1号塘)、1.50 (2号塘)和1.49 kg/m2 (3号塘), 高密度组分别为2.17 (4号塘)、2.14 (5号塘)和2.13 kg/m2 (6号塘)。秋季低密度组放养密度分别为1.74 (Ⅰ号塘)、1.72 (Ⅱ号塘)和1.75 kg/m2 (Ⅲ号塘), 高密度组分别为2.36 (Ⅳ号塘)、2.34(Ⅴ号塘)和2.36 kg/m2 (Ⅵ号塘)。两次分别从每个养殖塘采集5份水样, 每个密度组养殖塘随机采集4尾日本鳗鲡。结果显示: 两季高密度塘水体透明度和溶氧显著低于低密度塘(P<0.05), 总氮、总磷、氨氮、亚硝酸盐、COD、叶绿素a指标显著高于低密度塘(P<0.05), 硅藻门、绿藻门、蓝藻门密度均大于低密度塘一个数量级, 且经统计分析, 夏季高密度组的蓝藻门密度显著高于低密度组(P<0.05)。此外, 高密度塘水体菌群Shannon指数显著低于低密度塘, Simpson指数则相反(P<0.05)。在门水平上, 经统计分析, 夏秋两季高密度组放线菌门均显著低于低密度组(P<0.05); 而夏季高密度组变形菌门极显著高于低密度组(P<0.01); 秋季拟杆菌门显著高于低密度组(P<0.05)。在营养品质方面, 日本鳗鲡肌肉的硬度、剪切力、咀嚼性、回复性参数及粗脂肪和粗蛋白含量均显著小于低密度塘(P<0.05); 水分含量显著高于低密度塘(P<0.05)。综上, 高密度与低密度塘相比, 水质指标、藻类组成、菌群多样性及鱼体质构、营养成分等指标中大部分参数呈现一致性负面影响, 共同构成日本鳗鲡品质与养殖环境的敏感参数。此外, 夏季日本鳗鲡放养密度为2.13—2.17 kg/m2水质呈现富营养化及轻度污染状态。
Abstract:This research aimed to investigate the influence of stocking density on the nutrient and water quality parameters of cultured Anguilla japonica in summer and autumn. The stocking densities of the low-density group in summer were 1.51 (pond 1), 1.50 (pond 2) and 1.49 kg/m2 (pond 3), while those of the high-density group were 2.17 (pond 4), 2.14 (pond 5) and 2.13 kg/m2 (pond 6), respectively. The stocking densities were 1.74 (pond Ⅰ), 1.72 (pond Ⅱ) and 1.75 kg/m2 (pond Ⅲ) for the low-density group and 2.36 (pond Ⅳ), 2.34 (pond Ⅴ) and 2.36 kg/m2 (pond Ⅵ) for the high-density group in autumn. Each time, five water samples and four eels were collected from each pond and each density groups, respectively. The results showed that high-density ponds exhibited lower water transparency and dissolved oxygen levels compared to that of low-density ponds (P<0.05). Moreover, high-density ponds had higher levels of nitrogen, phosphorus, ammonia, nitrite, chemical oxygen demand, and Chlorophyll a than that of their low-density counterparts (P<0.05). Bacillariophyte, Chlorophyll, and Cyanophyte were found to be ten times more abundant in high-density ponds. The Shannon index of bacteria decreased in high-density ponds while the Simpson index was the opposite. Actinobacteria in high-density group was significantly lower than that of low-density group in both seasons (P<0.05). Proteobacteria was significantly higher than that of low-density group in the summer (P<0.01), while Bacteroides was significantly higher than that of low-density group in autumn (P<0.05). In terms of nutritional quality, muscle firmness, shear force, chewiness, reparability parameters and crude fat and crude protein contents of Japanese eels in high-density group were significantly lower than those in low-density ponds (P<0.05), while the moisture content was the opposite (P<0.05). In conclusion, compared to low-density ponds, parameters like water quality index, algal composition, bacterial diversity, fish body composition and nutrient content in high-density group showed negative effects, which together constituted the sensitive parameters of Japanese eel quality and its culture environment. Moreover, 2.13—2.17 kg/m2 in summer seems to be an inappropriate density, which caused eutrophication and mild pollution in this study.
-
Keywords:
- Stocking density /
- Nutritional quality /
- Texture /
- Changes of water quality /
- Anguilla japonica
-
-
表 1 夏秋两季养殖塘放养密度相关数据
Table 1 Data related to stocking density of fish ponds in summer and autumn
鱼塘编号
Number of
fish pond鱼塘面积
Area of fish
ponds (m2)总尾数
Total
quantity总重量
Gross
weight
(kg)尾均重
Average
fish
weight
(g)放养密度
Stocking
density
(kg/m2)1 10000 38000 15116.40 397.80 1.51 2 10000 36000 14994.00 416.50 1.50 3 10000 37000 14888.80 402.40 1.49 4 10000 59000 21727.34 368.26 2.17 5 10000 57000 21364.17 374.81 2.14 6 10000 58000 21334.14 367.83 2.13 Ⅰ 10000 36000 17413.20 483.70 1.74 Ⅱ 10000 38000 17168.40 451.80 1.72 Ⅲ 10000 37000 17523.20 473.60 1.75 Ⅳ 10000 60000 23550.00 392.50 2.36 Ⅴ 10000 59000 23397.63 396.57 2.34 Ⅵ 10000 58000 23586.86 406.67 2.36 表 2 夏秋两季不同放养密度组鳗鲡的生长参数
Table 2 Growth parameters of eels from different stocking density groups in summer and autumn
季节
Season组别
Group初重
Initial body weight (g)末重
Final body weight (g)增重率
WGR (%)特定生长率
SGR (%/d)肝体比
HSI脏体比
VSI夏季
Summer高密度
High density46.33±0.44 370.30±2.26 705.00±4.91 1.39±0.01 0.80±0.09 2.43±0.13 低密度
Low density50.33±0.66 405.57±5.63 711.13±11.25 1.45±0.01 0.88±0.08 2.50±0.08 P值 P Value 0.007 0.004 0.644 0.003 0.551 0.660 秋季
Autumn高密度
High density45.57±0.98 398.58±4.21 785.73±9.36 1.38±0.01 1.50±0.07 3.68±0.31 低密度
Low density50.40±1.23 469.70±9.41 839.40±18.83 1.49±0.01 1.71±0.10 4.46±0.19 P值 P Value 0.037 0.002 0.063 0.002 0.164 0.097 注: P<0.05表示同一季节各组之间存在显著差异, P<0.01表示同一季节各组之间存在极显著差异, 下同Note: P<0.05 indicates significant difference in the same season, P<0.01 indicates a very significant difference in the same season, the same applies below 表 3 夏秋两季不同放养密度组水质的物理参数
Table 3 Physical parameters of water quality in different stocking density groups in summer and autumn
季节
Season组别
Group温度
Temperature
(℃)透明度
Transparency
(cm)溶氧
Dissolved
oxygen
(mg/L)夏季
Summer高密度
High density32.75±0.21 17.17±1.36 7.37±0.39 低密度
Low density32.96±0.12 27.33±0.67 8.99±0.44 P值 P Value 0.435 0.003 0.046 秋季
Autumn高密度
High density22.44±0.09 17.60±0.58 7.90±0.02 低密度
Low density22.21±0.06 23.00±1.00 8.42±0.03 P值 P Value 0.106 0.007 0.001 表 4 夏秋两季不同放养密度组水质的化学参数
Table 4 Chemical parameters of water quality in different stocking density groups in summer and autumn
季节
Season组别
Group酸碱度
pH化学需氧量
COD (mg/L)总氮
Total
nitrogen
(mg/L)总磷
Total
phosphorus
(mg/L)氨氮
Ammonia
nitrogen
(mg/L)亚硝酸盐
Nitrite
(mg/L)总硬度
Total hardness
(mmol/L)叶绿素a
Chlorophyll a
(μg/L)夏季
Summer高密度
High density8.37±0.35 7.75±0.26 nd nd 0.13±0 0.17±0.01 168.48±2.12 174.85±18.09 低密度
Low density8.57±0.12 5.73±0.33 nd nd 0.11±0 0.04±0 152.07±4.32 20.67±1.45 P值 P Value 0.620 0.009 nd nd 0.013 0.001 0.027 0.013 秋季
Autumn高密度
High density7.70±0.06 7.94±0.28 0.86±0.06 0.56±0.01 0.37±0.01 0.20±0.01 255.16±1.33 125.49±9.74 低密度
Low density7.80±0.06 6.40±0.47 0.55±0.08 0.45±0.01 0.22±0.02 0.12±0 176.97±6.69 44.60±2.05 P值 P Value 0.330 0.048 0.037 0.002 0.004 0.005 0.006 0.001 注: nd表示未检测Note: nd indicates not detected 表 5 夏季不同放养密度养殖塘浮游藻类密度
Table 5 Plankton algae density in ponds with different stocking densities in summer
高密度组藻类
High-density group algae低密度组藻类
Low-density group algae种类
Phylum密度
Density (个/L)种类
Phylum密度
Density (个/L)硅藻门Bacillariophyta 20302844 硅藻门Bacillariophyta 3467457 舟形藻属Navicula 1200913 舟形藻属Navicula 1121672 小环藻属Cyclotella 15875774 小环藻属Cyclotella 733449 菱形藻属Nitzschia 922183 菱形藻属Nitzschia 588674 三角藻属Trieres 1381791 三角藻属Trieres 614131 桥弯藻属Cymbella 142330 桥弯藻属Cymbella 68200 曲壳藻属Achnanthes 68200 直链藻属Melosira 341331 星杆藻属Asterionella 711652 绿藻门Chlorophyta 165915774 绿藻门Chlorophyta 58063327 绿球藻属Chlorococcum 13892043 绿球藻属Chlorococcum 4508659 卵囊藻属Oocystis 8080217 卵囊藻属Oocystis 2768706 蹄形藻属Kirchneriella 33367591 蹄形藻属Kirchneriella 9400450 月牙藻属Selenastrum 4219504 月牙藻属Selenastrum 1164084 空球藻属Eudorina 2452235 空球藻属Eudorina 814378 小球藻属Chlorella 58954452 小球藻属Chlorella 10346289 衣藻属Chlamydomonas 9260374 衣藻属Chlamydomonas 12922793 栅藻属Scenedesmus 15336104 栅藻属Scenedesmus 13250275 团藻属Volvox 3146096 团藻属Volvox 853760 实球藻属Pandorina 1512261 实球藻属Pandorina 272800 鼓藻属Cosmarium 5859270 鼓藻属Cosmarium 1231953 十字藻属Crucigenia 3751000 十字藻属Crucigenia 179474 四孢藻属Tetraspora 5942296 四孢藻属Tetraspora 277153 空星藻属Coelastrum 142330 空星藻属Coelastrum 72553 蓝藻门Cyanophyta 14274557 蓝藻门Cyanophyta 1698483 平裂藻属Merismopedia 6861513 平裂藻属Merismopedia 136400 色球藻属Chroococcus 7128383 色球藻属Chroococcus 1353130 鱼腥藻属Anabaena 284661 鱼腥藻属Anabaena 208953 裸藻门Euglenophyta 1257252 裸藻门Euglenophyta 1493552 扁裸藻属Phacus 278730 扁裸藻属Phacus 682331 裸藻属Euglena 978522 裸藻属Euglena 811221 隐藻门Cryptophyta 23211722 隐藻门Cryptophyta 12356292 隐藻属Cryptomonas 22932991 隐藻属Cryptomonas 8676776 蓝隐藻属Chroomonas 278730 蓝隐藻属Chroomonas 3679516 表 6 秋季不同放养密度养殖塘浮游藻类密度
Table 6 Plankton algae density in ponds with different stocking densities in autumn
高密度组藻类
High-density group algae低密度组藻类
Low-density group algae种类
Phylum密度
Density (个/L)种类
Phylum密度
Density (个/L)硅藻门Bacillariophyta 26131440 硅藻门Bacillariophyta 3683618 舟形藻属Navicula 2238800 舟形藻属Navicula 1650959 小环藻属Cyclotella 12206172 小环藻属Cyclotella 908395 菱形藻属Nitzschia 1799453 菱形藻属Nitzschia 281300 三角藻属Trieres 649314 三角藻属Trieres 375067 桥弯藻属Cymbella 5040776 桥弯藻属Cymbella 180692 曲壳藻属Achnanthes 1596947 曲壳藻属Achnanthes 180692 圆筛藻属Coscinodiscus 2599979 圆筛藻属Coscinodiscus 106513 绿藻门Chlorophyta 119065028 绿藻门Chlorophyta 84921579 绿球藻属Chlorococcum 52515082 绿球藻属Chlorococcum 8544369 卵囊藻属Oocystis 717331 卵囊藻属Oocystis 6817969 蹄形藻属Kirchneriella 10435804 蹄形藻属Kirchneriella 16839111 月牙藻属Selenastrum 1063301 月牙藻属Selenastrum 3718630 空球藻属Eudorina 2057893 空球藻属Eudorina 495728 小球藻属Chlorella 37909529 小球藻属Chlorella 36441619 衣藻属Chlamydomonas 2494767 衣藻属Chlamydomonas 5588618 栅藻属Scenedesmus 5714297 栅藻属Scenedesmus 2394341 团藻属Volvox 53257 团藻属Volvox 588792 实球藻属Pandorina 1105072 实球藻属Pandorina 518532 鼓藻属Cosmarium 1591297 鼓藻属Cosmarium 747974 十字藻属Crucigenia 426054 十字藻属Crucigenia 106122 四孢藻属Tetraspora 1802887 四孢藻属Tetraspora 1677106 空星藻属Coelastrum 1178458 空星藻属Coelastrum 442667 蓝藻门Cyanophyta 14926088 蓝藻门Cyanophyta 4945190 平裂藻属Merismopedia 5389050 平裂藻属Merismopedia 3014649 色球藻属Chroococcus 8927753 色球藻属Chroococcus 1411293 鱼腥藻属Anabaena 609284 鱼腥藻属Anabaena 519248 裸藻门Euglenophyta 7284712 裸藻门Euglenophyta 583902 扁裸藻属Phacus 1273459 扁裸藻属Phacus 494327 裸藻属Euglena 5792954 隐藻门Cryptophyta 9849539 隐藻门Cryptophyta 980241 隐藻属Cryptomonas 3378246 隐藻属Cryptomonas 2555146 蓝隐藻属Chroomonas 6471293 蓝隐藻属Chroomonas 5425095 表 7 夏秋两季不同放养密度养殖塘水质细菌的多样性指数
Table 7 Diversity index of water quality bacteria in aquaculture ponds with different stocking densities in summer and autumn
季节
Season组别
Group香农指数
Shannon辛普森指数
Simpson覆盖率
Good coverage (%)夏季
Summer高密度
High density2.18±0.14 0.26±0.03 0.99±0 低密度
Low density3.33±0.26 0.12±0.03 0.99±0 P值 P Value 0.018 0.019 0.716 秋季
Autumn高密度
High density3.16±0.08 0.16±0.01 0.99±0 低密度
Low density3.52±0.05 0.11±0.01 0.99±0 P值 P Value 0.017 0.049 0.084 表 8 夏秋两季不同放养密度养殖塘鳗鲡背肌的质构特性
Table 8 Textural characteristics of the eel dorsal muscle in different stocking density groups in summer and autumn
季节
Season组别
Group硬度
Hardness黏性
Stickiness弹性
Springiness咀嚼性
Chewiness胶着性
Gumminess黏聚性
Cohesiveness回复性
Resilience剪切力
Shearing force夏季
Summer高密度
High density450.79±15.30 0.49±0.04 0.59±0.02 149.54±6.91 318.56±17.95 0.61±0.02 0.90±0.03 16335.53±208.66 低密度
Low density517.13±9.19 0.51±0.06 0.57±0.02 228.50±7.18 288.56±10.56 0.59±0.01 1.13±0.02 17483.17±310.49 P值 P Value 0.001 0.739 0.527 <0.001 0.133 0.381 <0.001 0.041 秋季
Autumn高密度
High density414.27±17.47 0.26±0.12 0.65±0.01 153.69±7.31 273.74±13.01 0.63±0.01 0.96±0.03 14717.50±477.72 低密度
Low density479.95±16.92 0.33±0.12 0.65±0.02 228.08±12.71 274.83±14.13 0.62±0.01 1.18±0.04 16884.18±642.19 P值 P Value 0.014 0.676 0.877 <0.001 0.955 0.745 0.001 0.017 表 9 夏秋两季不同放养密度养殖塘鳗鲡背肌的营养成分(湿重%)
Table 9 Nutrient composition of eel dorsal muscle in different stocking density groups in summer and autumn (% wet weight)
季节
Season组别
Group水分
Moisture粗脂肪
Crude lipid粗蛋白
Crude protein粗灰分
Ash夏季
Summer高密度
High density58.63±
0.0122.89±
0.4516.58±
0.391.16±
0.07低密度
Low density56.10±
0.0124.97±
0.5918.71±
0.291.03±
0.01P值 0.04 0.031 0.003 0.208 秋季
Autumn高密度
High density60.03±
0.0123.35±
0.2316.33±
0.351.25±
0.07低密度
Low density57.75±
024.92±
0.2817.53±
0.051.14±
0.04P值 0.033 0.005 0.024 0.194 -
[1] Salas-Leiton E, Anguis V, Martin-Antonio B, et al. Effects of stocking density and feed ration on growth and gene expression in the Senegalese sole (Solea senegalensis): potential effects on the immune response [J]. Fish & Shellfish Immunology, 2010, 28(2): 296-302.
[2] 颜孙安, 姚清华, 林香信, 等. 不同养殖密度瓦氏黄颡鱼肌肉营养成分分析与评价 [J]. 食品安全质量检测学报, 2019, 10(19): 6637-6644. YAN Sun An, Yao Q H, Lin X X, et al. Analysis and evaluation of nutritional component of Pelteobagrus vachelli cultured with different stocking density [J]. Journal of Food Safety & Quality, 2019, 10(19): 6637-6644.
[3] Lu J, Li S, He X, et al. An in-pond tank culture system for high-intensive fish production: effect of stocking density on growth of grass carp (Ctenopharyngodon idella Valenciennes, 1844) and blunt snout bream (Megalobrama amblycephala Yih, 1955) [J]. Aquaculture, 2022(549): 737808. doi: 10.1016/j.aquaculture.2021.737808
[4] 周伟, 王洋, 孙学亮, 等. 养殖密度对斑节对虾肌肉品质的影响 [J]. 食品工业科技, 2018, 39(23): 69-75. Zhou W, Wang Y, Sun X L, et al. Effect of stocking density on muscle quality of Penaeus monodon [J]. Science and Technology of Food Industry, 2018, 39(23): 69-75.
[5] Rabalais N N, Díaz R J, Levin L A, et al. Dynamics and distribution of natural and human-caused hypoxia [J]. Biogeosciences, 2010, 7(2): 585-619. doi: 10.5194/bg-7-585-2010
[6] 朱亦晨, 谭洪新, 罗国芝. 养殖密度对硝化型生物絮团系统中凡纳滨对虾生长和水质的影响 [J]. 上海海洋大学学报, 2020, 29(1): 27-35. Zhu Y C, Tan H X, Luo G Z. Effect of different stocking density on growth performance of Litopenaeus vannamei and water quality in nitrifying bio-floc system [J]. Journal of Shanghai Ocean University, 2020, 29(1): 27-35.
[7] 侯文杰, 臧维玲, 刘永士, 等. 室内凡纳滨对虾养殖密度对水质与生长的影响 [J]. 安徽农业大学学报, 2010, 37(2): 284-289. Hou W J, Zang W L, Liu Y S, et al. Effects of stocking densities on growth and water quality in Litopenaeus vannamei indoor culture [J]. Journal of Anhui Agricultural University, 2010, 37(2): 284-289.
[8] Zhang X, Zheng W, Zhang H, et al. Comparison of muscle quality of the yellow catfish cultured in In-pond raceway systems and traditional ponds [J]. Water, 2022, 14(8): 1223. doi: 10.3390/w14081223
[9] 祝云龙. 滩塘水体营养盐的动态变化及其对浮游植物和鱼生长的影响 [D]. 南京: 南京农业大学, 2004: 1-2. Zhu Y L. Dynamic changes of nutrients in beach water and their effects on phytoplankton and fish growth [D]. Nanjing: Nanjing Agricultural University, 2004: 1-2.
[10] 李铁柱, 李慷, 吴嘉敏, 等. 中国近海日本鳗鲡玻璃鳗体组织营养成分及氨基酸、脂肪酸组成的比较 [J]. 水产学报, 2023, 47(6): 105-117. Li T Z, Li K, Wu J M, et al. Comparative study on the nutrient composition, amino acids, and fatty acids composition of glass eel tissues of Japanese eel (Anguilla japonica) from offshore of China [J]. Journal of Fisheries of China, 2023, 47(6): 105-117.
[11] 罗鸣钟, 关瑞章, 靳恒. 五种鳗鲡的含肉率及肌肉营养成分分析 [J]. 水生生物学报, 2015, 39(4): 714-722. Luo M Z, Guan R Z, Jin H. Analysis on the ratio of flesh content and the nutritional composition in the muscle of five species of eel [J]. Acta Hydrobiologica Sinica, 2015, 39(4): 714-722.
[12] Tan C, Sun D, Tan H, et al. Effects of stocking density on growth, body composition, digestive enzyme levels, and blood biochemical parameters of Anguilla marmorata in a recirculating aquaculture system [J]. Turkish Journal of Fisheries and Aquatic Sciences, 2018(18): 9-16.
[13] Schafberg M, Loest K, Müller-Belecke A, et al. Pike-perch (Sander lucioperca) and rainbow trout (Oncorhynchus mykiss) fed with an alternative microorganism mix for reducing fish meal and oil-fishes ’ growth performances and quality traits [J]. Foods, 2021, 10(8): 1799. doi: 10.3390/foods10081799
[14] Hu L, Yun B, Xue M, et al. Effects of fish meal quality and fish meal substitution by animal protein blend on growth performance, flesh quality and liver histology of Japanese seabass (Lateolabrax japonicus) [J]. Aquaculture, 2013(372/373/374/375): 52-61.
[15] Wang C, Li Z, Pan Z, et al. A high-performance optoelectronic sensor device for nitrate nitrogen in recirculating aquaculture systems [J]. Sensors, 2018, 18(10): 3382. doi: 10.3390/s18103382
[16] 王楠楠. 循环水养殖中放养密度对点带石斑鱼幼鱼生长、存活和水质的影响 [J]. 水产学杂志, 2015, 28(3): 44-47. Wang N N. Effects of stocking density on growth and survival of Malabar grouper Epinephelus malabaricus and water quality in an indoor recirculating aquaculture system [J]. Chinese Journal of Fisheries, 2015, 28(3): 44-47.
[17] 侯志帅, 温海深, 李吉方, 等. 网箱养殖密度对虹鳟生长, 体组分, 皮质醇与水质的影响 [C]. 2015年中国水产学会学术年会论文摘要集. 杭州, 2015: 234. Hou Z S, Wen H S, Li J F, et al. Effects of Cage Culture Density on Rainbow Trout Growth, Body Composition, Cortisol and Water Quality [C]. Abstract Collection of Papers of the Annual Meeting of the Chinese Fisheries Society, Hangzhou, 2015: 234.
[18] 刘桂兰. 两种贝类滤食对封闭水体透明度影响的研究 [D]. 湛江: 广东海洋大学, 2014: 5-6. Liu G L. The effect of two species bivalve filter feeding on water transparency [D]. Zhanjiang: Guangdong Ocean University, 2014: 5-6.
[19] 乔玮, 宋协法, 高淳仁, 等. 养殖密度对循环水系统中大菱鲆(Scophthalmus maximus)生长的影响 [J]. 渔业科学进展, 2014, 35(5): 76-82. Qiao W, Song X F, Gao C R, et al. Effects of stocking density on the growth and physiology of adult turbot and changes in water quality [J]. Progress in Fishery Sciences, 2014, 35(5): 76-82.
[20] Arnold S J, Coman F E, Jackson C J, et al. High-intensity, zero water-exchange production of juvenile tiger shrimp, Penaeus monodon: an evaluation of artificial substrates and stocking density [J]. Aquaculture, 2009, 293(1/2): 42-48.
[21] 徐杨. 尼罗罗非鱼(Oreochromis niloticus)对氨氮和亚硝酸盐氮胁迫的生理响应 [D]. 南京农业大学, 2017: 4-12. Xu Y. Physiological response of Nile tilapia (Oreochromis niloticus) to ammonia and nitrite nitrogen stress [D]. Nanjing Agricultural University, 2017: 4-12.
[22] 张赛. 密度和模式对许氏平鲉生长环境和性能的影响 [D]. 大连海洋大学, 2023: 13-14. Zhang S. Effects of aquaculture density and models on growth environment and growth performance of Sebastodes schlegeli [D]. Dalian Ocean University, 2023: 13-14.
[23] 祁真, 杨京平, 刘鹰. 对虾池残饵、粪便及死虾腐解对养殖水质影响的模拟试验 [J]. 水产科学, 2004, 23(11): 5-8. doi: 10.3969/j.issn.1003-1111.2004.11.003 Qi Z, Yang J P, Liu Y. Effects of feed remnants, excrement and dead shrimp bodies on water quality in aquaria [J]. Fisheries Science, 2004, 23(11): 5-8. doi: 10.3969/j.issn.1003-1111.2004.11.003
[24] Chary K, Brigolin D, Callier M D. Farm-scale models in fish aquaculture–An overview of methods and applications [J]. Reviews in Aquaculture, 2022, 14(4): 2122-2157. doi: 10.1111/raq.12695
[25] 任作为. 水产养殖氨氮在线检测方法及系统研究 [D]. 镇江: 江苏大学, 2017: 1-2. Ren Z W. Study on online detection method and system of ammonia nitrogen in aquaculture [D]. Zhenjiang: Jiangsu University, 2017: 1-2.
[26] 蔡龙炎, 李颖, 郑子航. 我国湖泊系统氮磷时空变化及对富营养化影响研究 [J]. 地球与环境, 2010, 38(2): 235-241. Cai L Y, Li Y, Zheng Z H. Temporal and spatial distribution of nitrogen and phosphorus of lake systems in China and their impact on eutrophication [J]. Earth and Environment, 2010, 38(2): 235-241.
[27] 李浩宇. 养殖模式和密度对缢蛏生长与生理指标的影响 [D]. 上海: 上海海洋大学, 2021: 27-28. Li H Y. Effects of culture mode and density on growth and physiological indexes of Sinonovacula Constricta [D]. Shanghai: Shanghai Ocean University, 2021: 27-28.
[28] 刘宇, 沈建忠. 藻类生物学评价在水质监测中的应用 [J]. 水利渔业, 2008, 29(4): 5-7. Liu Y, Shen J Z. Application of biological evaluation of algae in water quality monitoring [J]. Reservoir Fisheries, 2008, 29(4): 5-7.
[29] Schveitzer R, Arantes R, Baloi M F, et al. Use of artificial substrates in the culture of Litopenaeus vannamei (Biofloc System) at different stocking densities: effects on microbial activity, water quality and production rates [J]. Aquacultural Engineering, 2013(54): 93-103. doi: 10.1016/j.aquaeng.2012.12.003
[30] 高亚辉, 梁君荣, 陈长平, 等. 海洋硅藻多样性与生态作用研究 [J]. 厦门大学学报(自然科学版), 2011, 50(2): 455-464. Gao Y H, Liang J R, Chen C P, et al. Studies on biodiversity and ecological importance of marine diatoms [J]. Journal of Xiamen University (Natural Science), 2011, 50(2): 455-464.
[31] 刘国祥. 水产养殖池塘裸藻水华的特点、危害和调控 [J]. 中国水产, 2009(2): 59-60. Liu G X. Characteristics, harm and regulation of Euglena bloom in aquaculture ponds [J]. China Fisheries, 2009(2): 59-60.
[32] Price D J, Bate M R. The effect of magnetic fields on the formation of circumstellar discs around young stars [J]. Astrophysics and Space Science, 2007, 311(1): 75-80.
[33] 胡梦红, 武震, 周作强, 等. 鱼蚌混养对池塘水质、藻相结构及三角帆蚌生长的影响 [J]. 水产学报, 2014, 38(2): 200-207. Hu M H, Wu Z, Zhou Z Q, et al. The impact of polyculture of freshwater mussel on water quality, plankton community and mussel growth performance in ponds of silver carp and bighead carp [J]. Journal of Fisheries of China, 2014, 38(2): 200-207.
[34] 陈旭, 梁旭方, 李姣, 等. 硝化细菌对加州鲈池塘水质影响及底质净化作用 [J]. 水生生物学报, 2020, 44(2): 399-406. Chen X, Liang X F, Li J, et al. Study of water quality and sediment purification by nitrifying bacteria in a California perch (Micropterus salmoides) pond [J]. Acta Hydrobiologica Sinica, 2020, 44(2): 399-406.
[35] 聂志娟, 徐钢春, 杜富宽, 等. 长江刀鲚体内菌群PCR-DGGE指纹图谱及多样性比较分析 [J]. 水生生物学报, 2015, 39(5): 1019-1026. doi: 10.7541/2015.133 Nie Z J, Xu G C, Du F K, et al. PCR-DGGE fingerprinting and diversity analysis of the predominant bacterial community in Coilia nasus [J]. Acta Hydrobiologica Sinica, 2015, 39(5): 1019-1026. doi: 10.7541/2015.133
[36] 孙志伟, 邱丽华, 曹煜成, 等. 蓝藻水华对水产养殖业影响的研究进展 [J]. 生态科学, 2017, 36(1): 231-235. Sun Z W, Qiu L H, Cao Y C, et al. Research progress on the effect of cyanobacteria bloom on aquaculture [J]. Ecological Science, 2017, 36(1): 231-235.
[37] 张超群, 戴建荣. 放线菌的研究现况与展望 [J]. 中国病原生物学杂志, 2019, 14(1): 110-113. Zhang C Q, Dai J R. Status of and prospects for research on actinomycetes [J]. Journal of Pathogen Biology, 2019, 14(1): 110-113.
[38] 林钦, 朱志红. 有益微生物专题之一: 有益微生物菌群在水产养殖中的应用研究 [J]. 中国水产, 2008(10): 48-49. Lin Q, Zhu Z H. One of the topics of beneficial microorganisms: application of beneficial microbial flora in aquaculture [J]. China Fisheries, 2008(10): 48-49.
[39] Hoang M N, Nguyen P N, Le D V B, et al. Effects of stocking density of gray mullet Mugil cephalus on water quality, growth performance, nutrient conversion rate, and microbial community structure in the white shrimp Litopenaeus vannamei integrated system [J]. Aquaculture, 2018, 496: 123-133. doi: 10.1016/j.aquaculture.2018.07.018
[40] Liu G H, Rajendran N, Amemiya T, et al. Bacterial community structure analysis of sediment in the Sagami River, Japan using a rapid approach based on two-dimensional DNA gel electrophoresis mapping with selective primer pairs [J]. Environmental Monitoring and Assessment, 2011, 182(1): 187-195.
[41] Martins G, Henriques I, Ribeiro D C, et al. Bacterial diversity and geochemical profiles in sediments from eutrophic azorean lakes [J]. Geomicrobiology Journal, 2012, 29(8): 704-715. doi: 10.1080/01490451.2011.619633
[42] Sakami T, Fujioka Y, Shimoda T. Comparison of microbial community structures in intensive and extensive shrimp culture ponds and a mangrove area in Thailand [J]. Fisheries Science, 2008, 74(4): 889-898. doi: 10.1111/j.1444-2906.2008.01604.x
[43] 赵晓伟, 丁君, 窦妍, 等. 基于MiSeq测序技术分析红鳍东方鲀养殖环境菌群多样性 [J]. 生态学杂志, 2015, 34(10): 2965-2970. Zhao X W, Ding J, Dou Y, et al. Bacterial diversity in the breeding environment of Takifugu rubripes revealed by MiSeq sequencing [J]. Chinese Journal of Ecology, 2015, 34(10): 2965-2970.
[44] Fukui Y, Abe M, Kobayashi M, et al. Polaribacter porphyrae sp. nov., isolated from the red alga Porphyra yezoensis, and emended descriptions of the genus Polaribacter and two Polaribacter species [J]. International Journal of Systematic and Evolutionary Microbiology, 2013, 63(Pt_5): 1665-1672. doi: 10.1099/ijs.0.041434-0
[45] 陈美群, 谭猛, 刘海平. 西藏两种裂腹鱼鱼肉质构特征比较分析 [J]. 水生生物学报, 2018, 42(6): 1224-1231. doi: 10.7541/2018.150 Chen M W, Tan M, Liu H P. Texture analyses of two schizothoracinae fishes in Tibet Autonomous Region, China [J]. Acta Hydrobiologica Sinica, 2018, 42(6): 1224-1231. doi: 10.7541/2018.150
[46] 李文倩, 李小勤, 冷向军, 等. 鳜鱼肌肉品质评价的初步研究 [J]. 食品工业科技, 2010, 31(9): 114-117. Li W Q, Li X Q, Leng X J, et al. Preliminary study on flesh quality evaluation of Siniperca chuatsi (Basilewsky) [J]. Science and Technology of Food Industry, 2010, 31(9): 114-117.
[47] Johnston I A, Li X, Vieira V L A, et al. Muscle and flesh quality traits in wild and farmed Atlantic salmon [J]. Aquaculture, 2006, 256(1/2/3/4): 323-336.
[48] Wu T, Mao L. Influences of hot air drying and microwave drying on nutritional and odorous properties of grass carp (Ctenopharyngodon idellus) fillets [J]. Food Chemistry, 2008, 110(3): 647-653. doi: 10.1016/j.foodchem.2008.02.058
[49] 林婉玲, 关熔, 曾庆孝, 等. 影响脆肉鲩鱼背肌质构特性的因素 [J]. 华南理工大学学报(自然科学版), 2009, 37(4): 134-137. Lin W L, Guan R, Zeng Q X, et al. Factors affecting textural characteristics of dorsal muscle of crisp grass carp [J]. Journal of South China University of Technology (Natural Science Edition), 2009, 37(4): 134-137.
[50] 王垚. 蒸制对大菱鲆肌肉品质影响的研究 [D]. 大连: 大连工业大学, 2015: 7-10. Wang Y. Study on the effect of steaming on muscle quality of turbot [D]. Dalian: Dalian Polytechnic University, 2015: 7-10.
[51] 周伟. 养殖盐度和密度对斑节对虾肉质及风味的影响 [D]. 天津: 天津农学院, 2019: 14-15. Zhou W. Effects of culture salinity and density on meat quality and flavor of Penaeus monodon [D]. Tianjin: Tianjin Agricultural University, 2019: 14-15.
[52] 马旭洲, 温旭, 王武. 野生与人工养殖瓦氏黄颡鱼肌肉营养成分及品质评价 [J]. 安徽农业大学学报, 2016, 43(1): 26-31. Ma X Z, Wen X, Wang W. Comparisom of muscle nutritional components and nutritive quality of between wild and farmed Pelteoebagrus vachelli [J]. Journal of Anhui Agricultural University, 2016, 43(1): 26-31.
[53] 薛宝贵, 楼宝, 徐冬冬, 等. 密度胁迫对黄姑鱼幼鱼生长、代谢及非特异性免疫的影响 [J]. 渔业科学进展, 2013, 34(2): 45-51. Xue B G, Lou B, Xu D D, et al. Impact of density stress on growth, metabolism and non-specific immune functions of juvenile Nibea albiflora [J]. Progress in Fishery Sciences, 2013, 34(2): 45-51.
[54] 任源远, 温海深, 李吉方, 等. 池塘放养密度对施氏鲟幼鱼生长、摄食和肌肉组分的影响 [J]. 大连海洋大学学报, 2014, 29(1): 45-50. Ren Y Y, Wen H S, Li J F, et al. Effects and physiological mechanism of stocking density on growth and feeding in juvenile Amur sturgeon Acipenser schrenckii in a pond [J]. Journal of Dalian Ocean University, 2014, 29(1): 45-50.
[55] 邱小琮, 赵红雪, 王远吉, 等. 兰州鲇肌肉营养成分分析及营养价值评价 [J]. 水产科学, 2008, 27(8): 407-410. Qiu X C, Zhao H X, Wang Y J, et al. Nutrient analysis and nutritive value evaluation in muscle of catfish Silurus lanzhouensis [J]. Fisheries Science, 2008, 27(8): 407-410.