放养密度对日本鳗鲡夏秋两季养殖水质及营养品质的影响

杨佳雯, 高敏, 陈森, 张浩田, 吴坤, 温小波, 胡雄, 孙育平, 宁丽军

杨佳雯, 高敏, 陈森, 张浩田, 吴坤, 温小波, 胡雄, 孙育平, 宁丽军. 放养密度对日本鳗鲡夏秋两季养殖水质及营养品质的影响[J]. 水生生物学报, 2024, 48(6): 979-990. DOI: 10.7541/2024.2023.0336
引用本文: 杨佳雯, 高敏, 陈森, 张浩田, 吴坤, 温小波, 胡雄, 孙育平, 宁丽军. 放养密度对日本鳗鲡夏秋两季养殖水质及营养品质的影响[J]. 水生生物学报, 2024, 48(6): 979-990. DOI: 10.7541/2024.2023.0336
YANG Jia-Wen, GAO Min, CHEN Sen, ZHANG Hao-Tian, WU Kun, WEN Xiao-Bo, HU Xiong, SUN Yu-Ping, NING Li-Jun. STOCKING DENSITY ON WATER QUALITY AND NUTRITIONAL QUALITY OF ANGUILLA JAPONICA IN SUMMER AND AUTUMN[J]. ACTA HYDROBIOLOGICA SINICA, 2024, 48(6): 979-990. DOI: 10.7541/2024.2023.0336
Citation: YANG Jia-Wen, GAO Min, CHEN Sen, ZHANG Hao-Tian, WU Kun, WEN Xiao-Bo, HU Xiong, SUN Yu-Ping, NING Li-Jun. STOCKING DENSITY ON WATER QUALITY AND NUTRITIONAL QUALITY OF ANGUILLA JAPONICA IN SUMMER AND AUTUMN[J]. ACTA HYDROBIOLOGICA SINICA, 2024, 48(6): 979-990. DOI: 10.7541/2024.2023.0336

放养密度对日本鳗鲡夏秋两季养殖水质及营养品质的影响

基金项目: 国家自然科学基金(32002400); 广东省科技厅乡村振兴专项资金 (2021): 鳗鱼生态健康养殖策略与调控技术; 江门市科技计划项目(2020030103240009002)资助
详细信息
    作者简介:

    杨佳雯(2000—), 女, 硕士研究生; 主要从事鱼类营养与糖脂代谢。E-mail: yangjiawen200719@stu.scau.edu.cn

    通信作者:

    宁丽军(1986—), 男, 博士, 副教授; E-mail: ning_lijun@163.com

  • 中图分类号: S965.1

STOCKING DENSITY ON WATER QUALITY AND NUTRITIONAL QUALITY OF ANGUILLA JAPONICA IN SUMMER AND AUTUMN

Funds: Supported by the National Natural Science Foundation of China (32002400); Special Fund for Rural Revitalization of Guangdong Provincial Department of Science and Technology (2021); Science and Technology Program of Jiangmen, China (2020030103240009002)
    Corresponding author:
  • 摘要:

    研究以日本鳗鲡(Anguilla japonica)为研究对象, 分夏秋两季, 调查并讨论了放养密度对养殖鱼水质和营养品质变化的影响。夏季低密度组放养密度分别为1.51 (1号塘)、1.50 (2号塘)和1.49 kg/m2 (3号塘), 高密度组分别为2.17 (4号塘)、2.14 (5号塘)和2.13 kg/m2 (6号塘)。秋季低密度组放养密度分别为1.74 (Ⅰ号塘)、1.72 (Ⅱ号塘)和1.75 kg/m2 (Ⅲ号塘), 高密度组分别为2.36 (Ⅳ号塘)、2.34(Ⅴ号塘)和2.36 kg/m2 (Ⅵ号塘)。两次分别从每个养殖塘采集5份水样, 每个密度组养殖塘随机采集4尾日本鳗鲡。结果显示: 两季高密度塘水体透明度和溶氧显著低于低密度塘(P<0.05), 总氮、总磷、氨氮、亚硝酸盐、COD、叶绿素a指标显著高于低密度塘(P<0.05), 硅藻门、绿藻门、蓝藻门密度均大于低密度塘一个数量级, 且经统计分析, 夏季高密度组的蓝藻门密度显著高于低密度组(P<0.05)。此外, 高密度塘水体菌群Shannon指数显著低于低密度塘, Simpson指数则相反(P<0.05)。在门水平上, 经统计分析, 夏秋两季高密度组放线菌门均显著低于低密度组(P<0.05); 而夏季高密度组变形菌门极显著高于低密度组(P<0.01); 秋季拟杆菌门显著高于低密度组(P<0.05)。在营养品质方面, 日本鳗鲡肌肉的硬度、剪切力、咀嚼性、回复性参数及粗脂肪和粗蛋白含量均显著小于低密度塘(P<0.05); 水分含量显著高于低密度塘(P<0.05)。综上, 高密度与低密度塘相比, 水质指标、藻类组成、菌群多样性及鱼体质构、营养成分等指标中大部分参数呈现一致性负面影响, 共同构成日本鳗鲡品质与养殖环境的敏感参数。此外, 夏季日本鳗鲡放养密度为2.13—2.17 kg/m2水质呈现富营养化及轻度污染状态。

    Abstract:

    This research aimed to investigate the influence of stocking density on the nutrient and water quality parameters of cultured Anguilla japonica in summer and autumn. The stocking densities of the low-density group in summer were 1.51 (pond 1), 1.50 (pond 2) and 1.49 kg/m2 (pond 3), while those of the high-density group were 2.17 (pond 4), 2.14 (pond 5) and 2.13 kg/m2 (pond 6), respectively. The stocking densities were 1.74 (pond Ⅰ), 1.72 (pond Ⅱ) and 1.75 kg/m2 (pond Ⅲ) for the low-density group and 2.36 (pond Ⅳ), 2.34 (pond Ⅴ) and 2.36 kg/m2 (pond Ⅵ) for the high-density group in autumn. Each time, five water samples and four eels were collected from each pond and each density groups, respectively. The results showed that high-density ponds exhibited lower water transparency and dissolved oxygen levels compared to that of low-density ponds (P<0.05). Moreover, high-density ponds had higher levels of nitrogen, phosphorus, ammonia, nitrite, chemical oxygen demand, and Chlorophyll a than that of their low-density counterparts (P<0.05). Bacillariophyte, Chlorophyll, and Cyanophyte were found to be ten times more abundant in high-density ponds. The Shannon index of bacteria decreased in high-density ponds while the Simpson index was the opposite. Actinobacteria in high-density group was significantly lower than that of low-density group in both seasons (P<0.05). Proteobacteria was significantly higher than that of low-density group in the summer (P<0.01), while Bacteroides was significantly higher than that of low-density group in autumn (P<0.05). In terms of nutritional quality, muscle firmness, shear force, chewiness, reparability parameters and crude fat and crude protein contents of Japanese eels in high-density group were significantly lower than those in low-density ponds (P<0.05), while the moisture content was the opposite (P<0.05). In conclusion, compared to low-density ponds, parameters like water quality index, algal composition, bacterial diversity, fish body composition and nutrient content in high-density group showed negative effects, which together constituted the sensitive parameters of Japanese eel quality and its culture environment. Moreover, 2.13—2.17 kg/m2 in summer seems to be an inappropriate density, which caused eutrophication and mild pollution in this study.

  • 图  1   放养密度对夏季藻类门密度的影响

    *表示同一季节各组之间存在显著性差异(P<0.05); 下同

    Figure  1.   Effect of stocking density on algal density (phylum) in summer

    * indicates significant difference in groups in the same season (P<0.05); the same applies below

    图  2   放养密度对秋季藻类门密度的影响

    Figure  2.   Effect of stocking density on algal density(phylum) in autumn

    图  3   夏季放养密度对细菌群落的影响

    **表示同一季节各组之间存在极显著性差异(P<0.01)

    Figure  3.   Effect of stocking density on bacterial communities in summer

    ** indicates a very significant difference in groups in the same season (P<0.01)

    图  4   秋季放养密度对细菌群落的影响

    Figure  4.   Effect of stocking density on bacterial communities in autumn

    表  1   夏秋两季养殖塘放养密度相关数据

    Table  1   Data related to stocking density of fish ponds in summer and autumn

    鱼塘编号
    Number of
    fish pond
    鱼塘面积
    Area of fish
    ponds (m2)
    总尾数
    Total
    quantity
    总重量
    Gross
    weight
    (kg)
    尾均重
    Average
    fish
    weight
    (g)
    放养密度
    Stocking
    density
    (kg/m2)
    1100003800015116.40397.801.51
    2100003600014994.00416.501.50
    3100003700014888.80402.401.49
    4100005900021727.34368.262.17
    5100005700021364.17374.812.14
    6100005800021334.14367.832.13
    100003600017413.20483.701.74
    100003800017168.40451.801.72
    100003700017523.20473.601.75
    100006000023550.00392.502.36
    100005900023397.63396.572.34
    100005800023586.86406.672.36
    下载: 导出CSV

    表  2   夏秋两季不同放养密度组鳗鲡的生长参数

    Table  2   Growth parameters of eels from different stocking density groups in summer and autumn

    季节
    Season
    组别
    Group
    初重
    Initial body weight (g)
    末重
    Final body weight (g)
    增重率
    WGR (%)
    特定生长率
    SGR (%/d)
    肝体比
    HSI
    脏体比
    VSI
    夏季
    Summer
    高密度
    High density
    46.33±0.44370.30±2.26705.00±4.911.39±0.010.80±0.092.43±0.13
    低密度
    Low density
    50.33±0.66405.57±5.63711.13±11.251.45±0.010.88±0.082.50±0.08
    PP Value0.0070.0040.6440.0030.5510.660
    秋季
    Autumn
    高密度
    High density
    45.57±0.98398.58±4.21785.73±9.361.38±0.011.50±0.073.68±0.31
    低密度
    Low density
    50.40±1.23469.70±9.41839.40±18.831.49±0.011.71±0.104.46±0.19
    PP Value0.0370.0020.0630.0020.1640.097
    注: P<0.05表示同一季节各组之间存在显著差异, P<0.01表示同一季节各组之间存在极显著差异, 下同Note: P<0.05 indicates significant difference in the same season, P<0.01 indicates a very significant difference in the same season, the same applies below
    下载: 导出CSV

    表  3   夏秋两季不同放养密度组水质的物理参数

    Table  3   Physical parameters of water quality in different stocking density groups in summer and autumn

    季节
    Season
    组别
    Group
    温度
    Temperature
    (℃)
    透明度
    Transparency
    (cm)
    溶氧
    Dissolved
    oxygen
    (mg/L)
    夏季
    Summer
    高密度
    High density
    32.75±0.2117.17±1.367.37±0.39
    低密度
    Low density
    32.96±0.1227.33±0.678.99±0.44
    PP Value0.4350.0030.046
    秋季
    Autumn
    高密度
    High density
    22.44±0.0917.60±0.587.90±0.02
    低密度
    Low density
    22.21±0.0623.00±1.008.42±0.03
    PP Value0.1060.0070.001
    下载: 导出CSV

    表  4   夏秋两季不同放养密度组水质的化学参数

    Table  4   Chemical parameters of water quality in different stocking density groups in summer and autumn

    季节
    Season
    组别
    Group
    酸碱度
    pH
    化学需氧量
    COD (mg/L)
    总氮
    Total
    nitrogen
    (mg/L)
    总磷
    Total
    phosphorus
    (mg/L)
    氨氮
    Ammonia
    nitrogen
    (mg/L)
    亚硝酸盐
    Nitrite
    (mg/L)
    总硬度
    Total hardness
    (mmol/L)
    叶绿素a
    Chlorophyll a
    (μg/L)
    夏季
    Summer
    高密度
    High density
    8.37±0.357.75±0.26ndnd0.13±00.17±0.01168.48±2.12174.85±18.09
    低密度
    Low density
    8.57±0.125.73±0.33ndnd0.11±00.04±0152.07±4.3220.67±1.45
    PP Value0.6200.009ndnd0.0130.0010.0270.013
    秋季
    Autumn
    高密度
    High density
    7.70±0.067.94±0.280.86±0.060.56±0.010.37±0.010.20±0.01255.16±1.33125.49±9.74
    低密度
    Low density
    7.80±0.066.40±0.470.55±0.080.45±0.010.22±0.020.12±0176.97±6.6944.60±2.05
    PP Value0.3300.0480.0370.0020.0040.0050.0060.001
    注: nd表示未检测Note: nd indicates not detected
    下载: 导出CSV

    表  5   夏季不同放养密度养殖塘浮游藻类密度

    Table  5   Plankton algae density in ponds with different stocking densities in summer

    高密度组藻类
    High-density group algae
    低密度组藻类
    Low-density group algae
    种类
    Phylum
    密度
    Density (个/L)
    种类
    Phylum
    密度
    Density (个/L)
    硅藻门Bacillariophyta20302844硅藻门Bacillariophyta3467457
    舟形藻属Navicula1200913舟形藻属Navicula1121672
    小环藻属Cyclotella15875774小环藻属Cyclotella733449
    菱形藻属Nitzschia922183菱形藻属Nitzschia588674
    三角藻属Trieres1381791三角藻属Trieres614131
    桥弯藻属Cymbella142330桥弯藻属Cymbella68200
    曲壳藻属Achnanthes68200直链藻属Melosira341331
    星杆藻属Asterionella711652
    绿藻门Chlorophyta165915774绿藻门Chlorophyta58063327
    绿球藻属Chlorococcum13892043绿球藻属Chlorococcum4508659
    卵囊藻属Oocystis8080217卵囊藻属Oocystis2768706
    蹄形藻属Kirchneriella33367591蹄形藻属Kirchneriella9400450
    月牙藻属Selenastrum4219504月牙藻属Selenastrum1164084
    空球藻属Eudorina2452235空球藻属Eudorina814378
    小球藻属Chlorella58954452小球藻属Chlorella10346289
    衣藻属Chlamydomonas9260374衣藻属Chlamydomonas12922793
    栅藻属Scenedesmus15336104栅藻属Scenedesmus13250275
    团藻属Volvox3146096团藻属Volvox853760
    实球藻属Pandorina1512261实球藻属Pandorina272800
    鼓藻属Cosmarium5859270鼓藻属Cosmarium1231953
    十字藻属Crucigenia3751000十字藻属Crucigenia179474
    四孢藻属Tetraspora5942296四孢藻属Tetraspora277153
    空星藻属Coelastrum142330空星藻属Coelastrum72553
    蓝藻门Cyanophyta14274557蓝藻门Cyanophyta1698483
    平裂藻属Merismopedia6861513平裂藻属Merismopedia136400
    色球藻属Chroococcus7128383色球藻属Chroococcus1353130
    鱼腥藻属Anabaena284661鱼腥藻属Anabaena208953
    裸藻门Euglenophyta1257252裸藻门Euglenophyta1493552
    扁裸藻属Phacus278730扁裸藻属Phacus682331
    裸藻属Euglena978522裸藻属Euglena811221
    隐藻门Cryptophyta23211722隐藻门Cryptophyta12356292
    隐藻属Cryptomonas22932991隐藻属Cryptomonas8676776
    蓝隐藻属Chroomonas278730蓝隐藻属Chroomonas3679516
    下载: 导出CSV

    表  6   秋季不同放养密度养殖塘浮游藻类密度

    Table  6   Plankton algae density in ponds with different stocking densities in autumn

    高密度组藻类
    High-density group algae
    低密度组藻类
    Low-density group algae
    种类
    Phylum
    密度
    Density (个/L)
    种类
    Phylum
    密度
    Density (个/L)
    硅藻门Bacillariophyta26131440硅藻门Bacillariophyta3683618
    舟形藻属Navicula2238800舟形藻属Navicula1650959
    小环藻属Cyclotella12206172小环藻属Cyclotella908395
    菱形藻属Nitzschia1799453菱形藻属Nitzschia281300
    三角藻属Trieres649314三角藻属Trieres375067
    桥弯藻属Cymbella5040776桥弯藻属Cymbella180692
    曲壳藻属Achnanthes1596947曲壳藻属Achnanthes180692
    圆筛藻属Coscinodiscus2599979圆筛藻属Coscinodiscus106513
    绿藻门Chlorophyta119065028绿藻门Chlorophyta84921579
    绿球藻属Chlorococcum52515082绿球藻属Chlorococcum8544369
    卵囊藻属Oocystis717331卵囊藻属Oocystis6817969
    蹄形藻属Kirchneriella10435804蹄形藻属Kirchneriella16839111
    月牙藻属Selenastrum1063301月牙藻属Selenastrum3718630
    空球藻属Eudorina2057893空球藻属Eudorina495728
    小球藻属Chlorella37909529小球藻属Chlorella36441619
    衣藻属Chlamydomonas2494767衣藻属Chlamydomonas5588618
    栅藻属Scenedesmus5714297栅藻属Scenedesmus2394341
    团藻属Volvox53257团藻属Volvox588792
    实球藻属Pandorina1105072实球藻属Pandorina518532
    鼓藻属Cosmarium1591297鼓藻属Cosmarium747974
    十字藻属Crucigenia426054十字藻属Crucigenia106122
    四孢藻属Tetraspora1802887四孢藻属Tetraspora1677106
    空星藻属Coelastrum1178458空星藻属Coelastrum442667
    蓝藻门Cyanophyta14926088蓝藻门Cyanophyta4945190
    平裂藻属Merismopedia5389050平裂藻属Merismopedia3014649
    色球藻属Chroococcus8927753色球藻属Chroococcus1411293
    鱼腥藻属Anabaena609284鱼腥藻属Anabaena519248
    裸藻门Euglenophyta7284712裸藻门Euglenophyta583902
    扁裸藻属Phacus1273459扁裸藻属Phacus494327
    裸藻属Euglena5792954
    隐藻门Cryptophyta9849539隐藻门Cryptophyta980241
    隐藻属Cryptomonas3378246隐藻属Cryptomonas2555146
    蓝隐藻属Chroomonas6471293蓝隐藻属Chroomonas5425095
    下载: 导出CSV

    表  7   夏秋两季不同放养密度养殖塘水质细菌的多样性指数

    Table  7   Diversity index of water quality bacteria in aquaculture ponds with different stocking densities in summer and autumn

    季节
    Season
    组别
    Group
    香农指数
    Shannon
    辛普森指数
    Simpson
    覆盖率
    Good coverage (%)
    夏季
    Summer
    高密度
    High density
    2.18±0.140.26±0.030.99±0
    低密度
    Low density
    3.33±0.260.12±0.030.99±0
    PP Value0.0180.0190.716
    秋季
    Autumn
    高密度
    High density
    3.16±0.080.16±0.010.99±0
    低密度
    Low density
    3.52±0.050.11±0.010.99±0
    PP Value0.0170.0490.084
    下载: 导出CSV

    表  8   夏秋两季不同放养密度养殖塘鳗鲡背肌的质构特性

    Table  8   Textural characteristics of the eel dorsal muscle in different stocking density groups in summer and autumn

    季节
    Season
    组别
    Group
    硬度
    Hardness
    黏性
    Stickiness
    弹性
    Springiness
    咀嚼性
    Chewiness
    胶着性
    Gumminess
    黏聚性
    Cohesiveness
    回复性
    Resilience
    剪切力
    Shearing force
    夏季
    Summer
    高密度
    High density
    450.79±15.300.49±0.040.59±0.02149.54±6.91318.56±17.950.61±0.020.90±0.0316335.53±208.66
    低密度
    Low density
    517.13±9.190.51±0.060.57±0.02228.50±7.18288.56±10.560.59±0.011.13±0.0217483.17±310.49
    PP Value0.0010.7390.527<0.0010.1330.381<0.0010.041
    秋季
    Autumn
    高密度
    High density
    414.27±17.470.26±0.120.65±0.01153.69±7.31273.74±13.010.63±0.010.96±0.0314717.50±477.72
    低密度
    Low density
    479.95±16.920.33±0.120.65±0.02228.08±12.71274.83±14.130.62±0.011.18±0.0416884.18±642.19
    PP Value0.0140.6760.877<0.0010.9550.7450.0010.017
    下载: 导出CSV

    表  9   夏秋两季不同放养密度养殖塘鳗鲡背肌的营养成分(湿重%)

    Table  9   Nutrient composition of eel dorsal muscle in different stocking density groups in summer and autumn (% wet weight)

    季节
    Season
    组别
    Group
    水分
    Moisture
    粗脂肪
    Crude lipid
    粗蛋白
    Crude protein
    粗灰分
    Ash
    夏季
    Summer
    高密度
    High density
    58.63±
    0.01
    22.89±
    0.45
    16.58±
    0.39
    1.16±
    0.07
    低密度
    Low density
    56.10±
    0.01
    24.97±
    0.59
    18.71±
    0.29
    1.03±
    0.01
    P0.040.0310.0030.208
    秋季
    Autumn
    高密度
    High density
    60.03±
    0.01
    23.35±
    0.23
    16.33±
    0.35
    1.25±
    0.07
    低密度
    Low density
    57.75±
    0
    24.92±
    0.28
    17.53±
    0.05
    1.14±
    0.04
    P0.0330.0050.0240.194
    下载: 导出CSV
  • [1]

    Salas-Leiton E, Anguis V, Martin-Antonio B, et al. Effects of stocking density and feed ration on growth and gene expression in the Senegalese sole (Solea senegalensis): potential effects on the immune response [J]. Fish & Shellfish Immunology, 2010, 28(2): 296-302.

    [2] 颜孙安, 姚清华, 林香信, 等. 不同养殖密度瓦氏黄颡鱼肌肉营养成分分析与评价 [J]. 食品安全质量检测学报, 2019, 10(19): 6637-6644.

    YAN Sun An, Yao Q H, Lin X X, et al. Analysis and evaluation of nutritional component of Pelteobagrus vachelli cultured with different stocking density [J]. Journal of Food Safety & Quality, 2019, 10(19): 6637-6644.

    [3]

    Lu J, Li S, He X, et al. An in-pond tank culture system for high-intensive fish production: effect of stocking density on growth of grass carp (Ctenopharyngodon idella Valenciennes, 1844) and blunt snout bream (Megalobrama amblycephala Yih, 1955) [J]. Aquaculture, 2022(549): 737808. doi: 10.1016/j.aquaculture.2021.737808

    [4] 周伟, 王洋, 孙学亮, 等. 养殖密度对斑节对虾肌肉品质的影响 [J]. 食品工业科技, 2018, 39(23): 69-75.

    Zhou W, Wang Y, Sun X L, et al. Effect of stocking density on muscle quality of Penaeus monodon [J]. Science and Technology of Food Industry, 2018, 39(23): 69-75.

    [5]

    Rabalais N N, Díaz R J, Levin L A, et al. Dynamics and distribution of natural and human-caused hypoxia [J]. Biogeosciences, 2010, 7(2): 585-619. doi: 10.5194/bg-7-585-2010

    [6] 朱亦晨, 谭洪新, 罗国芝. 养殖密度对硝化型生物絮团系统中凡纳滨对虾生长和水质的影响 [J]. 上海海洋大学学报, 2020, 29(1): 27-35.

    Zhu Y C, Tan H X, Luo G Z. Effect of different stocking density on growth performance of Litopenaeus vannamei and water quality in nitrifying bio-floc system [J]. Journal of Shanghai Ocean University, 2020, 29(1): 27-35.

    [7] 侯文杰, 臧维玲, 刘永士, 等. 室内凡纳滨对虾养殖密度对水质与生长的影响 [J]. 安徽农业大学学报, 2010, 37(2): 284-289.

    Hou W J, Zang W L, Liu Y S, et al. Effects of stocking densities on growth and water quality in Litopenaeus vannamei indoor culture [J]. Journal of Anhui Agricultural University, 2010, 37(2): 284-289.

    [8]

    Zhang X, Zheng W, Zhang H, et al. Comparison of muscle quality of the yellow catfish cultured in In-pond raceway systems and traditional ponds [J]. Water, 2022, 14(8): 1223. doi: 10.3390/w14081223

    [9] 祝云龙. 滩塘水体营养盐的动态变化及其对浮游植物和鱼生长的影响 [D]. 南京: 南京农业大学, 2004: 1-2.

    Zhu Y L. Dynamic changes of nutrients in beach water and their effects on phytoplankton and fish growth [D]. Nanjing: Nanjing Agricultural University, 2004: 1-2.

    [10] 李铁柱, 李慷, 吴嘉敏, 等. 中国近海日本鳗鲡玻璃鳗体组织营养成分及氨基酸、脂肪酸组成的比较 [J]. 水产学报, 2023, 47(6): 105-117.

    Li T Z, Li K, Wu J M, et al. Comparative study on the nutrient composition, amino acids, and fatty acids composition of glass eel tissues of Japanese eel (Anguilla japonica) from offshore of China [J]. Journal of Fisheries of China, 2023, 47(6): 105-117.

    [11] 罗鸣钟, 关瑞章, 靳恒. 五种鳗鲡的含肉率及肌肉营养成分分析 [J]. 水生生物学报, 2015, 39(4): 714-722.

    Luo M Z, Guan R Z, Jin H. Analysis on the ratio of flesh content and the nutritional composition in the muscle of five species of eel [J]. Acta Hydrobiologica Sinica, 2015, 39(4): 714-722.

    [12]

    Tan C, Sun D, Tan H, et al. Effects of stocking density on growth, body composition, digestive enzyme levels, and blood biochemical parameters of Anguilla marmorata in a recirculating aquaculture system [J]. Turkish Journal of Fisheries and Aquatic Sciences, 2018(18): 9-16.

    [13]

    Schafberg M, Loest K, Müller-Belecke A, et al. Pike-perch (Sander lucioperca) and rainbow trout (Oncorhynchus mykiss) fed with an alternative microorganism mix for reducing fish meal and oil-fishes ’ growth performances and quality traits [J]. Foods, 2021, 10(8): 1799. doi: 10.3390/foods10081799

    [14]

    Hu L, Yun B, Xue M, et al. Effects of fish meal quality and fish meal substitution by animal protein blend on growth performance, flesh quality and liver histology of Japanese seabass (Lateolabrax japonicus) [J]. Aquaculture, 2013(372/373/374/375): 52-61.

    [15]

    Wang C, Li Z, Pan Z, et al. A high-performance optoelectronic sensor device for nitrate nitrogen in recirculating aquaculture systems [J]. Sensors, 2018, 18(10): 3382. doi: 10.3390/s18103382

    [16] 王楠楠. 循环水养殖中放养密度对点带石斑鱼幼鱼生长、存活和水质的影响 [J]. 水产学杂志, 2015, 28(3): 44-47.

    Wang N N. Effects of stocking density on growth and survival of Malabar grouper Epinephelus malabaricus and water quality in an indoor recirculating aquaculture system [J]. Chinese Journal of Fisheries, 2015, 28(3): 44-47.

    [17] 侯志帅, 温海深, 李吉方, 等. 网箱养殖密度对虹鳟生长, 体组分, 皮质醇与水质的影响 [C]. 2015年中国水产学会学术年会论文摘要集. 杭州, 2015: 234.

    Hou Z S, Wen H S, Li J F, et al. Effects of Cage Culture Density on Rainbow Trout Growth, Body Composition, Cortisol and Water Quality [C]. Abstract Collection of Papers of the Annual Meeting of the Chinese Fisheries Society, Hangzhou, 2015: 234.

    [18] 刘桂兰. 两种贝类滤食对封闭水体透明度影响的研究 [D]. 湛江: 广东海洋大学, 2014: 5-6.

    Liu G L. The effect of two species bivalve filter feeding on water transparency [D]. Zhanjiang: Guangdong Ocean University, 2014: 5-6.

    [19] 乔玮, 宋协法, 高淳仁, 等. 养殖密度对循环水系统中大菱鲆(Scophthalmus maximus)生长的影响 [J]. 渔业科学进展, 2014, 35(5): 76-82.

    Qiao W, Song X F, Gao C R, et al. Effects of stocking density on the growth and physiology of adult turbot and changes in water quality [J]. Progress in Fishery Sciences, 2014, 35(5): 76-82.

    [20]

    Arnold S J, Coman F E, Jackson C J, et al. High-intensity, zero water-exchange production of juvenile tiger shrimp, Penaeus monodon: an evaluation of artificial substrates and stocking density [J]. Aquaculture, 2009, 293(1/2): 42-48.

    [21] 徐杨. 尼罗罗非鱼(Oreochromis niloticus)对氨氮和亚硝酸盐氮胁迫的生理响应 [D]. 南京农业大学, 2017: 4-12.

    Xu Y. Physiological response of Nile tilapia (Oreochromis niloticus) to ammonia and nitrite nitrogen stress [D]. Nanjing Agricultural University, 2017: 4-12.

    [22] 张赛. 密度和模式对许氏平鲉生长环境和性能的影响 [D]. 大连海洋大学, 2023: 13-14.

    Zhang S. Effects of aquaculture density and models on growth environment and growth performance of Sebastodes schlegeli [D]. Dalian Ocean University, 2023: 13-14.

    [23] 祁真, 杨京平, 刘鹰. 对虾池残饵、粪便及死虾腐解对养殖水质影响的模拟试验 [J]. 水产科学, 2004, 23(11): 5-8. doi: 10.3969/j.issn.1003-1111.2004.11.003

    Qi Z, Yang J P, Liu Y. Effects of feed remnants, excrement and dead shrimp bodies on water quality in aquaria [J]. Fisheries Science, 2004, 23(11): 5-8. doi: 10.3969/j.issn.1003-1111.2004.11.003

    [24]

    Chary K, Brigolin D, Callier M D. Farm-scale models in fish aquaculture–An overview of methods and applications [J]. Reviews in Aquaculture, 2022, 14(4): 2122-2157. doi: 10.1111/raq.12695

    [25] 任作为. 水产养殖氨氮在线检测方法及系统研究 [D]. 镇江: 江苏大学, 2017: 1-2.

    Ren Z W. Study on online detection method and system of ammonia nitrogen in aquaculture [D]. Zhenjiang: Jiangsu University, 2017: 1-2.

    [26] 蔡龙炎, 李颖, 郑子航. 我国湖泊系统氮磷时空变化及对富营养化影响研究 [J]. 地球与环境, 2010, 38(2): 235-241.

    Cai L Y, Li Y, Zheng Z H. Temporal and spatial distribution of nitrogen and phosphorus of lake systems in China and their impact on eutrophication [J]. Earth and Environment, 2010, 38(2): 235-241.

    [27] 李浩宇. 养殖模式和密度对缢蛏生长与生理指标的影响 [D]. 上海: 上海海洋大学, 2021: 27-28.

    Li H Y. Effects of culture mode and density on growth and physiological indexes of Sinonovacula Constricta [D]. Shanghai: Shanghai Ocean University, 2021: 27-28.

    [28] 刘宇, 沈建忠. 藻类生物学评价在水质监测中的应用 [J]. 水利渔业, 2008, 29(4): 5-7.

    Liu Y, Shen J Z. Application of biological evaluation of algae in water quality monitoring [J]. Reservoir Fisheries, 2008, 29(4): 5-7.

    [29]

    Schveitzer R, Arantes R, Baloi M F, et al. Use of artificial substrates in the culture of Litopenaeus vannamei (Biofloc System) at different stocking densities: effects on microbial activity, water quality and production rates [J]. Aquacultural Engineering, 2013(54): 93-103. doi: 10.1016/j.aquaeng.2012.12.003

    [30] 高亚辉, 梁君荣, 陈长平, 等. 海洋硅藻多样性与生态作用研究 [J]. 厦门大学学报(自然科学版), 2011, 50(2): 455-464.

    Gao Y H, Liang J R, Chen C P, et al. Studies on biodiversity and ecological importance of marine diatoms [J]. Journal of Xiamen University (Natural Science), 2011, 50(2): 455-464.

    [31] 刘国祥. 水产养殖池塘裸藻水华的特点、危害和调控 [J]. 中国水产, 2009(2): 59-60.

    Liu G X. Characteristics, harm and regulation of Euglena bloom in aquaculture ponds [J]. China Fisheries, 2009(2): 59-60.

    [32]

    Price D J, Bate M R. The effect of magnetic fields on the formation of circumstellar discs around young stars [J]. Astrophysics and Space Science, 2007, 311(1): 75-80.

    [33] 胡梦红, 武震, 周作强, 等. 鱼蚌混养对池塘水质、藻相结构及三角帆蚌生长的影响 [J]. 水产学报, 2014, 38(2): 200-207.

    Hu M H, Wu Z, Zhou Z Q, et al. The impact of polyculture of freshwater mussel on water quality, plankton community and mussel growth performance in ponds of silver carp and bighead carp [J]. Journal of Fisheries of China, 2014, 38(2): 200-207.

    [34] 陈旭, 梁旭方, 李姣, 等. 硝化细菌对加州鲈池塘水质影响及底质净化作用 [J]. 水生生物学报, 2020, 44(2): 399-406.

    Chen X, Liang X F, Li J, et al. Study of water quality and sediment purification by nitrifying bacteria in a California perch (Micropterus salmoides) pond [J]. Acta Hydrobiologica Sinica, 2020, 44(2): 399-406.

    [35] 聂志娟, 徐钢春, 杜富宽, 等. 长江刀鲚体内菌群PCR-DGGE指纹图谱及多样性比较分析 [J]. 水生生物学报, 2015, 39(5): 1019-1026. doi: 10.7541/2015.133

    Nie Z J, Xu G C, Du F K, et al. PCR-DGGE fingerprinting and diversity analysis of the predominant bacterial community in Coilia nasus [J]. Acta Hydrobiologica Sinica, 2015, 39(5): 1019-1026. doi: 10.7541/2015.133

    [36] 孙志伟, 邱丽华, 曹煜成, 等. 蓝藻水华对水产养殖业影响的研究进展 [J]. 生态科学, 2017, 36(1): 231-235.

    Sun Z W, Qiu L H, Cao Y C, et al. Research progress on the effect of cyanobacteria bloom on aquaculture [J]. Ecological Science, 2017, 36(1): 231-235.

    [37] 张超群, 戴建荣. 放线菌的研究现况与展望 [J]. 中国病原生物学杂志, 2019, 14(1): 110-113.

    Zhang C Q, Dai J R. Status of and prospects for research on actinomycetes [J]. Journal of Pathogen Biology, 2019, 14(1): 110-113.

    [38] 林钦, 朱志红. 有益微生物专题之一: 有益微生物菌群在水产养殖中的应用研究 [J]. 中国水产, 2008(10): 48-49.

    Lin Q, Zhu Z H. One of the topics of beneficial microorganisms: application of beneficial microbial flora in aquaculture [J]. China Fisheries, 2008(10): 48-49.

    [39]

    Hoang M N, Nguyen P N, Le D V B, et al. Effects of stocking density of gray mullet Mugil cephalus on water quality, growth performance, nutrient conversion rate, and microbial community structure in the white shrimp Litopenaeus vannamei integrated system [J]. Aquaculture, 2018, 496: 123-133. doi: 10.1016/j.aquaculture.2018.07.018

    [40]

    Liu G H, Rajendran N, Amemiya T, et al. Bacterial community structure analysis of sediment in the Sagami River, Japan using a rapid approach based on two-dimensional DNA gel electrophoresis mapping with selective primer pairs [J]. Environmental Monitoring and Assessment, 2011, 182(1): 187-195.

    [41]

    Martins G, Henriques I, Ribeiro D C, et al. Bacterial diversity and geochemical profiles in sediments from eutrophic azorean lakes [J]. Geomicrobiology Journal, 2012, 29(8): 704-715. doi: 10.1080/01490451.2011.619633

    [42]

    Sakami T, Fujioka Y, Shimoda T. Comparison of microbial community structures in intensive and extensive shrimp culture ponds and a mangrove area in Thailand [J]. Fisheries Science, 2008, 74(4): 889-898. doi: 10.1111/j.1444-2906.2008.01604.x

    [43] 赵晓伟, 丁君, 窦妍, 等. 基于MiSeq测序技术分析红鳍东方鲀养殖环境菌群多样性 [J]. 生态学杂志, 2015, 34(10): 2965-2970.

    Zhao X W, Ding J, Dou Y, et al. Bacterial diversity in the breeding environment of Takifugu rubripes revealed by MiSeq sequencing [J]. Chinese Journal of Ecology, 2015, 34(10): 2965-2970.

    [44]

    Fukui Y, Abe M, Kobayashi M, et al. Polaribacter porphyrae sp. nov., isolated from the red alga Porphyra yezoensis, and emended descriptions of the genus Polaribacter and two Polaribacter species [J]. International Journal of Systematic and Evolutionary Microbiology, 2013, 63(Pt_5): 1665-1672. doi: 10.1099/ijs.0.041434-0

    [45] 陈美群, 谭猛, 刘海平. 西藏两种裂腹鱼鱼肉质构特征比较分析 [J]. 水生生物学报, 2018, 42(6): 1224-1231. doi: 10.7541/2018.150

    Chen M W, Tan M, Liu H P. Texture analyses of two schizothoracinae fishes in Tibet Autonomous Region, China [J]. Acta Hydrobiologica Sinica, 2018, 42(6): 1224-1231. doi: 10.7541/2018.150

    [46] 李文倩, 李小勤, 冷向军, 等. 鳜鱼肌肉品质评价的初步研究 [J]. 食品工业科技, 2010, 31(9): 114-117.

    Li W Q, Li X Q, Leng X J, et al. Preliminary study on flesh quality evaluation of Siniperca chuatsi (Basilewsky) [J]. Science and Technology of Food Industry, 2010, 31(9): 114-117.

    [47]

    Johnston I A, Li X, Vieira V L A, et al. Muscle and flesh quality traits in wild and farmed Atlantic salmon [J]. Aquaculture, 2006, 256(1/2/3/4): 323-336.

    [48]

    Wu T, Mao L. Influences of hot air drying and microwave drying on nutritional and odorous properties of grass carp (Ctenopharyngodon idellus) fillets [J]. Food Chemistry, 2008, 110(3): 647-653. doi: 10.1016/j.foodchem.2008.02.058

    [49] 林婉玲, 关熔, 曾庆孝, 等. 影响脆肉鲩鱼背肌质构特性的因素 [J]. 华南理工大学学报(自然科学版), 2009, 37(4): 134-137.

    Lin W L, Guan R, Zeng Q X, et al. Factors affecting textural characteristics of dorsal muscle of crisp grass carp [J]. Journal of South China University of Technology (Natural Science Edition), 2009, 37(4): 134-137.

    [50] 王垚. 蒸制对大菱鲆肌肉品质影响的研究 [D]. 大连: 大连工业大学, 2015: 7-10.

    Wang Y. Study on the effect of steaming on muscle quality of turbot [D]. Dalian: Dalian Polytechnic University, 2015: 7-10.

    [51] 周伟. 养殖盐度和密度对斑节对虾肉质及风味的影响 [D]. 天津: 天津农学院, 2019: 14-15.

    Zhou W. Effects of culture salinity and density on meat quality and flavor of Penaeus monodon [D]. Tianjin: Tianjin Agricultural University, 2019: 14-15.

    [52] 马旭洲, 温旭, 王武. 野生与人工养殖瓦氏黄颡鱼肌肉营养成分及品质评价 [J]. 安徽农业大学学报, 2016, 43(1): 26-31.

    Ma X Z, Wen X, Wang W. Comparisom of muscle nutritional components and nutritive quality of between wild and farmed Pelteoebagrus vachelli [J]. Journal of Anhui Agricultural University, 2016, 43(1): 26-31.

    [53] 薛宝贵, 楼宝, 徐冬冬, 等. 密度胁迫对黄姑鱼幼鱼生长、代谢及非特异性免疫的影响 [J]. 渔业科学进展, 2013, 34(2): 45-51.

    Xue B G, Lou B, Xu D D, et al. Impact of density stress on growth, metabolism and non-specific immune functions of juvenile Nibea albiflora [J]. Progress in Fishery Sciences, 2013, 34(2): 45-51.

    [54] 任源远, 温海深, 李吉方, 等. 池塘放养密度对施氏鲟幼鱼生长、摄食和肌肉组分的影响 [J]. 大连海洋大学学报, 2014, 29(1): 45-50.

    Ren Y Y, Wen H S, Li J F, et al. Effects and physiological mechanism of stocking density on growth and feeding in juvenile Amur sturgeon Acipenser schrenckii in a pond [J]. Journal of Dalian Ocean University, 2014, 29(1): 45-50.

    [55] 邱小琮, 赵红雪, 王远吉, 等. 兰州鲇肌肉营养成分分析及营养价值评价 [J]. 水产科学, 2008, 27(8): 407-410.

    Qiu X C, Zhao H X, Wang Y J, et al. Nutrient analysis and nutritive value evaluation in muscle of catfish Silurus lanzhouensis [J]. Fisheries Science, 2008, 27(8): 407-410.

图(4)  /  表(9)
计量
  • 文章访问数:  142
  • HTML全文浏览量:  22
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-23
  • 修回日期:  2023-12-21
  • 网络出版日期:  2024-02-21
  • 刊出日期:  2024-06-14

目录

    /

    返回文章
    返回