基于体长结构分析的赤水河鱼类禁渔效果评估

鲁文楷, 朱忠胜, 刘飞, 高欣, 刘焕章

鲁文楷, 朱忠胜, 刘飞, 高欣, 刘焕章. 基于体长结构分析的赤水河鱼类禁渔效果评估[J]. 水生生物学报, 2024, 48(8): 1433-1442. DOI: 10.7541/2024.2023.0369
引用本文: 鲁文楷, 朱忠胜, 刘飞, 高欣, 刘焕章. 基于体长结构分析的赤水河鱼类禁渔效果评估[J]. 水生生物学报, 2024, 48(8): 1433-1442. DOI: 10.7541/2024.2023.0369
LU Wen-Kai, ZHU Zhong-Sheng, LIU Fei, GAO Xin, LIU Huan-Zhang. EVALUATION OF FISHING BAN EFFECT IN THE CHISHUI RIVER BASED ON BODY LENGTH STRUCTURE ANALYSIS[J]. ACTA HYDROBIOLOGICA SINICA, 2024, 48(8): 1433-1442. DOI: 10.7541/2024.2023.0369
Citation: LU Wen-Kai, ZHU Zhong-Sheng, LIU Fei, GAO Xin, LIU Huan-Zhang. EVALUATION OF FISHING BAN EFFECT IN THE CHISHUI RIVER BASED ON BODY LENGTH STRUCTURE ANALYSIS[J]. ACTA HYDROBIOLOGICA SINICA, 2024, 48(8): 1433-1442. DOI: 10.7541/2024.2023.0369

基于体长结构分析的赤水河鱼类禁渔效果评估

基金项目: 科技基础资源调查专项(2022FY100400); 三峡工程运行安全综合监测系统, 库区维护和管理基金(2136703); 中国生物多样性监测与研究网络-内陆水体鱼类多样性监测网资助; 知识创新专项-基础研究项目(2022020801010141)资助
详细信息
    作者简介:

    鲁文楷(2000—), 男, 博士, 主要从事鱼类种群生态学研究。E-mail: 1139203909@qq.com

    通信作者:

    高欣(1980—), 男, 博士; 副研究员; 主要从事鱼类生态学研究。E-mail: gaoxin@ihb.ac.cn

    刘焕章(1966—), 男, 博士, 研究员; 主要从事进化生物学和保护生物学研究。E-mail: hzliu@ihb.ac.cn *共同通信作者

  • 中图分类号: S932.4

EVALUATION OF FISHING BAN EFFECT IN THE CHISHUI RIVER BASED ON BODY LENGTH STRUCTURE ANALYSIS

Funds: Supported by the National Science and Technology Basic Resources Survey Special Project (2022FY100400); The Comprehensive Safety Monitoring System of Three Gorges Project, Resevoir Operation and Management Fund (2136703); The Sino BON–Inland Water Fish Diversity Observation Network; Knowledge Innovation Program of Wuhan-Basic Research (2022020801010141)
    Corresponding author:
  • 摘要:

    为评估赤水河禁渔效果, 研究分析了禁渔前5年(2012—2016年)与禁渔后5年(2017—2021年) 20种主要鱼类种群的平均体长、种群体长比例分布(Proportional size distribution, PSD)及种群中性成熟个体占比变化。结果显示: 在禁渔持续5年后, 主要物种个体小型化初步缓解, 大个体及性成熟个体占比增加, 种群结构得到优化。其中, 16种鱼类种群平均体长增长1.7%—104.5% (P<0.05); 种群PSD值增长1—57 (P<0.05); 13种鱼类种群中性成熟个体占比增加1.0%—81.4%。但是, 并非所有物种都呈现一致性的表现, 有2种鱼类种群平均体长及PSD值无显著变化; 2种鱼类种群平均体长下降2.4%—6.2% (P<0.05), 种群PSD值下降3—15 (P<0.05)。7种鱼类种群中性成熟个体占比下降0.8%—18.1%。在禁渔后, 20种主要鱼类的种群体长结构变化存在差异, 这表明尽管大部分的优势鱼类种群结构得到有效改善, 赤水河鱼类的全面恢复却尚未实现。禁渔措施在促进部分鱼类资源恢复的同时, 也改变了鱼类群落结构, 并推动了整个水域生态系统的动态调整。因此文章建议, 赤水河禁渔应当持续, 并应在此基础上开展全面、长期、连续的监测和研究, 以期实现赤水河鱼类资源的有效恢复和生态系统服务功能的提升, 并为长江十年禁渔效果的评估及未来资源管理和生态保护提供可靠的理论和技术支撑。

    Abstract:

    The prohibition on fishing in the Chishui River, implemented in 2017, serves as a pioneering demonstration zone for the 10-Year Fishing Ban in the Yangtze River. To assess the effectiveness of the fishing ban in the Chishui River, we analyzed the average body length, proportional size distribution (PSD), and changes in the proportion of sexually mature individuals for 20 major fish species over the first five years before the ban (2012—2016) and the subsequent five years after the ban (2017—2021). The results showed that after five years of the fishing ban, there was a preliminary alleviation of the downsizing trend in the individuals of major species, characterized by an increase in the proportion of larger individuals and sexually mature individuals, thereby optimizing the population structure. Specifically, the average body length of 16 fish species increased by 1.7% to 104.5% (P<0.05); PSD values for the populations increased by 1 to 57 (P<0.05); and the proportion of sexually mature individuals increased by 1.0% to 81.4% for 13 fish species. However, consistent performance across all species was not observed. Two fish species showed no significant changes in average body length and PSD values, while two fish species experienced a decrease of 2.4% to 6.2% in average body length (P<0.05) and a decrease of 3 to 15 in PSD values (P<0.05). The proportion of sexually mature individuals decreased by 0.8% to 18.1% for seven fish species. Following the commencement of the fishing ban, variations in body length structures were observed among different species, although the population structure of some of the major fish species had been effectively improved, the full recovery of fish species in the Chishui River had not yet been realized. While promoting the recovery of some fish resources, the fishing ban also changed the structure of the fish community and contributed to the dynamic adjustment of the entire aquatic ecosystem. Consequently, we recommend the continuation of the fishing ban in the Chishui River, along with long-term, continuous, and targeted monitoring and research. Such efforts are crucial for achieving the effective recovery of fishery resources in the Chishui River and enhancing ecosystem service functions. Furthermore, this study provides a reliable theoretical and technical foundation for evaluating the 10-year ban on fishing in the Yangtze River and guiding future resource management and ecological conservation.

  • 图  1   赤水河鱼类资源调查样点

    Figure  1.   Fish resource survey sites in Chishui River

    图  2   赤水河20种主要鱼类种群禁渔前后平均体长变化

    图中所示为平均体长±标准差, “*”表示具有显著性差异(P<0.05), 点状柱形图所示为平均体长显著下降(P<0.05)的种群, 无点状为显著增加(P<0.05)及无显著差异的种群

    Figure  2.   Changes in mean body length of 20 major fish species in the Chishui River before and after fishing ban

    Results are shown as PSD values±confidence intervals, “*” indicate significant differences (P<0.05), Bar graph with dots show populations with significant decreases (P<0.05) in PSD values, and which without dots show significant increases (P<0.05) and populations with no significant differences

    图  3   赤水河20种主要鱼类种群禁渔前后PSD值(PSD-Q)变化

    上图所示为PSD值±置信区间, “*”表示具有显著性差异(P<0.05)。点状柱形图所示为PSD值显著下降(P<0.05)的种群, 无点状为显著增加(P<0.05)及无显著差异的种群

    Figure  3.   Changes in PSD value (PSD-Q) of 20 major fish species in the Chishui River before and after fishing ban

    Results are shown as PSD values±confidence intervals, “*” indicate significant differences (P<0.05). Bar graph with dots show populations with significant decreases (P<0.05) in PSD values, and which without dots show significant increases and populations with no significant differences

    图  4   赤水河6种主要鱼类种群禁渔前后PSD变化

    Figure  4.   Changes in PSD of 6 major fish species in the Chishui River before and after fishing ban

    图  5   赤水河20种主要鱼类禁渔前后种群性成熟个体占比变化

    点状柱形图所示为性成熟占比下降的种群, 无点状为上升种群

    Figure  5.   Percentage of sexually mature individuals of 20 major fish species in the Chishui River before and after fishing ban

    Bar graph without dots show populations with increases in percentage of sexually mature individuals after fishing ban, and those with dots show decreases

    表  1   赤水河20种主要鱼类体长和样本数量

    Table  1   Body length and sample size of 20 major fish species in the Chishui River

    物种Species在禁渔前(2012—2016年)
    Before fishing ban (2012—2016)
    在禁渔后(2017—2021年)
    After fishing ban (2017—2021)
    样本量
    Sample
    size
    最小采样体长
    Minimum sample
    body length
    (mm)
    最大采样体长
    Maximum Sample
    body length
    (mm)
    样本量
    Sample
    size
    最小采样体长
    Minimum sample
    body length
    (mm)
    最大采样体长
    Maximum Sample
    body length
    (mm)
    瓦氏黄颡鱼Pelteobagrus vachelli1653962370583158379
    唇䱻Hemibarbus labeo1091155261426547240
    大鳍鳠Mystus macropterus827233330361859368
    粗唇鮠Leiocassis crassilabris999335230308338308
    蛇鮈Saurogobio dabryi928830198651440241
    切尾拟鲿Pseudobagrus truncatus290058220388960192
    高体近红鲌Ancherythroculter kurematsui22138521895935265
    中华倒刺鲃Spinibarbus sinensis222655402167855525
    泉水鱼Pseudogyrincheilus prochilus183848253125450228
    墨头鱼Garra imberba46245299152776342
    飘鱼Pseudolaubuca sinensis1327953471480100302
    黑尾近红鲌Ancherythroculter nigrocauda47635362109852320
    昆明裂腹鱼Schizothorax grahami8363239591248415
    银鮈Squalidus argentatus6004251551418040226
    宽鳍鱲Zacco platypus165729144272156152
    云南光唇鱼Acrossocheilus yunnanensis181125243277035237
    Silurus asotus11043457542454550
    Siniperca chuatsi112834264143941313
    翘嘴鲌Culter alburnus4513552277150496
    岩原鲤Procypris rabaudi8307939026855380
    下载: 导出CSV
  • [1]

    Jørgensen C, Enberg K, Dunlop E S, et al. Ecology: managing evolving fish stocks [J]. Science, 2007, 318(5854): 1247-1248. doi: 10.1126/science.1148089

    [2]

    FAO. The State of World Fisheries and Aquaculture 2016: Contributing to Food Security and Nutrition for all [M]. United Nations, 2016: 64-75.

    [3]

    Worm B, Hilborn R, Baum J K, et al. Rebuilding global fisheries [J]. Science, 2009, 325(5940): 578-585. doi: 10.1126/science.1173146

    [4]

    Fernandes P G, Cook R M. Reversal of fish stock decline in the northeast Atlantic [J]. Current Biology, 2013, 23(15): 1432-1437. doi: 10.1016/j.cub.2013.06.016

    [5]

    Rindorf A, Gislason H, Burns F, et al. Are fish sensitive to trawling recovering in the Northeast Atlantic [J]? Journal of Applied Ecology, 2020, 57(10): 1936-1947. doi: 10.1111/1365-2664.13693

    [6]

    Wang Y, Wang Y, Liang C, et al. Assessment of 12 fish species in the northwest Pacific using the CMSY and BSM methods [J]. Frontiers in Marine Science, 2020(7): 616. doi: 10.3389/fmars.2020.00616

    [7]

    Zimmermann F, Werner K M. Improved management is the main driver behind recovery of Northeast Atlantic fish stocks [J]. Frontiers in Ecology and the Environment, 2019, 17(2): 93-99. doi: 10.1002/fee.2002

    [8]

    Bundy A, Fanning L P. Can Atlantic cod (Gadus morhua) recover? Exploring trophic explanations for the non-recovery of the cod stock on the eastern Scotian Shelf, Canada [J]. Canadian Journal of Fisheries and Aquatic Sciences, 2005, 62(7): 1474-1489. doi: 10.1139/f05-086

    [9]

    Liu C, He D, Chen Y, et al. Species invasions threaten the antiquity of China’s freshwater fish fauna [J]. Diversity and Distributions, 2017, 23(5): 556-566. doi: 10.1111/ddi.12541

    [10] 陈宇顺. 长江流域的主要人类活动干扰、水生态系统健康与水生态保护 [J]. 三峡生态环境监测, 2018, 3(3): 66-73.

    Chen Y S. Anthropogenic disturbance, aquatic ecosystem health, and water ecological conservation of the Yangtze River Basin in China [J]. Ecology and Environmental Monitoring of Three Gorges, 2018, 3(3): 66-73.

    [11] 中华人民共和国农业农村部. 保护长江水生生物资源禁渔为何一禁就是10年? [EB/OL]. (2019-10-29). http://www.yyj.moa.gov.cn/gzdt/201910/t20191029_6330735.htm.

    Ministry of Agriculture and Rural Affairs of the People’s Republic of China. Why is fishing banned for 10 years to protect the aquatic living resources of the Yangtze River? [EB/OL]. (2019-10-29). http://www.yyj.moa.gov.cn/gzdt/201910/t20191029_6330735.htm.

    [12] 危起伟. 从中华鲟(Acipenser sinensis)生活史剖析其物种保护: 困境与突围 [J]. 湖泊科学, 2020, 32(5): 1297-1319. doi: 10.18307/2020.0509

    Wei Q W. Conservation of Chinese sturgeon (Acipenser sinensis) based on its life history: dilemma and breakthrough [J]. Journal of Lake Sciences, 2020, 32(5): 1297-1319. doi: 10.18307/2020.0509

    [13]

    Su G, Logez M, Xu J, et al. Human impacts on global freshwater fish biodiversity [J]. Science, 2021, 371(6531): 835-838. doi: 10.1126/science.abd3369

    [14]

    Jin B, Winemiller K O, Ren W, et al. Basin-scale approach needed for Yangtze River fisheries restoration [J]. Fish and Fisheries, 2022, 23(4): 1009-1015. doi: 10.1111/faf.12657

    [15] 吴金明, 王芊芊, 刘飞等. 赤水河赤水段鱼类早期资源调查研究 [J]. 长江流域资源与环境, 2010, 19(11): 1270-1276.

    Wu J M, Wang Q Q, Liu F, et al. Fish resources of early life in Chishui section of the Chishui River [J]. Resources and Environment in the Yangtze Basin, 2010, 19(11): 1270-1276.

    [16] 刘飞, 刘定明, 袁大春, 等. 近十年来赤水河不同江段鱼类群落年际变化特征 [J]. 水生生物学报, 2020, 44(1): 122-132.

    Liu F, Liu D M, Yuan D C, et al. Interannual variations of fish assemblage in the Chishui River over the last decade [J]. Acta Hydrobiologica Sinica, 2020, 44(1): 122-132.

    [17] 曹文宣. 长江上游特有鱼类自然保护区的建设及相关问题的思考 [J]. 长江流域资源与环境, 2000, 9(2): 131-132.

    Cao W X. Thoughts on the construction of nature reserve for endemic fish in the upper reaches of the Yangtze River and related issues [J]. Resources and Environment in the Yangtze Basin, 2000, 9(2): 131-132.

    [18] 刘飞. 赤水河鱼类群落生态学研究 [D]. 北京: 中国科学院大学, 2013: 77-85.

    Liu F. Study on fish community ecology in Chishui River [D]. Beijing: University of Chinese Academy of Sciences, 2013: 77-85.

    [19]

    Phelps Q E, Willis D W. Development of an Asian carp size structure index and application through demonstration [J]. North American Journal of Fisheries Management, 2013, 33(2): 338-343. doi: 10.1080/02755947.2012.760506

    [20]

    Nallathambi M, Jayakumar N, Arumugam U, et al. Length-weight relationships of six tropical estuarine fish species from Pulicat lagoon, India [J]. Journal of Applied Ichthyology, 2020, 36(1): 125-127. doi: 10.1111/jai.13983

    [21]

    Le Cren E D. The length-weight relationship and seasonal cycle in gonad weight and condition in the perch (Perca fluviatilis) [J]. The Journal of Animal Ecology, 1951, 20(2): 201. doi: 10.2307/1540

    [22]

    Briers R. Body size: the structure and function of aquatic ecosystems [J]. Freshwater Biology, 2009, 54(2): 434.

    [23]

    Cope J M, Dowling N A, Hesp S A, et al. The stock assessment theory of relativity: deconstructing the term “data-limited” fisheries into components and guiding principles to support the science of fisheries management [J]. Reviews in Fish Biology and Fisheries, 2023, 33(1): 241-263.

    [24]

    Carline R F, Johnson B L, Hall T J. Estimation and interpretation of proportional stock density for fish populations in Ohio impoundments [J]. North American Journal of Fisheries Management, 1984, 4(2): 139-154. doi: 10.1577/1548-8659(1984)4<139:EAIOPS>2.0.CO;2

    [25]

    Anderson R O, and A S Weithman. The concept of balance for cool-water fish populations [J]. American Fisheries Society Special Publication, 1978, 11(3): 123-135.

    [26]

    Guy C S, Willis D W. Structural relationships of largemouth bass and bluegill populations in South Dakota ponds [J]. North American Journal of Fisheries Management, 1990, 10(3): 338-343. doi: 10.1577/1548-8675(1990)010<0338:SROLBA>2.3.CO;2

    [27]

    Gabelhouse D W JR. An assessment of crappie stocks in small Midwestern private impoundments [J]. North American Journal of Fisheries Management, 1984, 4(4A): 371-384. doi: 10.1577/1548-8659(1984)4<371:AAOCSI>2.0.CO;2

    [28]

    Barneche D R, Robertson D R, White C R, et al. Fish reproductive-energy output increases disproportionately with body size [J]. Science, 2018, 360(6389): 642-645. doi: 10.1126/science.aao6868

    [29] 谭智勇. 千里赤水河行 [M]. 贵阳: 贵州人民出版社, 1994: 1-11.

    Tan Z Y. Qianli Chishui River [M]. Guiyang: Guizhou People’s Publishing House, 1994: 1-11.

    [30] 吴正提. 赤水河水系水环境背景值及其地球化学特征 [J]. 贵州环保科技, 2001, 7(2): 25-30.

    Wu Z T. Background value and geochemical characteristics of water environment in Chishui River system [J]. Environmental Protection and Technology, 2001, 7(2): 25-30.

    [31] 王俊. 赤水河流域鱼类群落空间结构及生态过程研究 [D]. 北京: 中国科学院大学, 2015: 1-6.

    Wang J. Study on spatial structure and ecological process of fish community in Chishui River basin [D]. Beijing: University of Chinese Academy of Sciences, 2015: 1-6.

    [32] 伍律. 贵州鱼类志 [M]. 贵阳: 贵州人民出版社, 1989: 20-276.

    Wu L. Fish Fauna of Guizhou [M]. Guiyang: Guizhou People’s Publishing House, 1989: 20-276.

    [33] 郭延蜀, 孙治宇, 何兴恒, 等. 四川鱼类原色图志 [M]. 北京: 科学出版社, 2021: 50-76.

    Guo Y S, Sun Z Y, He X H, et al. Colored Atlas of Fishes in Sichuan [M]. Beijing: Science Press, 2021: 50-76.

    [34]

    Froese R, Binohlan C. Empirical relationships to estimate asymptotic length, length at first maturity and length at maximum yield per recruit in fishes, with a simple method to evaluate length frequency data [J]. Journal of Fish Biology, 2000, 56(4): 758-773. doi: 10.1111/j.1095-8649.2000.tb00870.x

    [35]

    Ogle D H. Introductory Fisheries Analyses with R [M]. CRC Press, 2018: 15-16.

    [36]

    Gabelhouse D W JR. A length-categorization system to assess fish stocks [J]. North American Journal of Fisheries Management, 1984, 4(3): 273-285. doi: 10.1577/1548-8659(1984)4<273:ALSTAF>2.0.CO;2

    [37]

    Anderson R O. Management of small warm water impoundments [J]. Fisheries, 1976, 1(6): 5-7.

    [38]

    Murphy B R, Brown M L, Springer T A. Evaluation of the relative weight (Wr) index, with new applications to walleye [J]. North American Journal of Fisheries Management, 1990, 10(1): 85-97. doi: 10.1577/1548-8675(1990)010<0085:EOTRWW>2.3.CO;2

    [39]

    Willis D W, Murphy B R, Guy C S. Stock density indices: development, use, and limitations [J]. Reviews in Fisheries Science, 1993, 1(3): 203-222. doi: 10.1080/10641269309388542

    [40]

    Laarman P W, Ryckman J R. Relative size selectivity of trap nets for eight species of fish [J]. North American Journal of Fisheries Management, 1982, 2(1): 33-37. doi: 10.1577/1548-8659(1982)2<33:RSSOTN>2.0.CO;2

    [41]

    Willis D W, Scalet C G. Relations between proportional stock density and growth and condition of northern Pike populations [J]. North American Journal of Fisheries Management, 1989, 9(4): 488-492. doi: 10.1577/1548-8675(1989)009<0488:RBPSDA>2.3.CO;2

    [42]

    Hubert W A. Passive capture techniques [J]. American Fisheries Society, 1983(3): 223-265.

    [43]

    Murphy B R, Willis D W, Springer T A. The relative weight index in fisheries management: status and needs [J]. Fisheries, 1991, 16(2): 30-38. doi: 10.1577/1548-8446(1991)016<0030:TRWIIF>2.0.CO;2

    [44]

    Heino M, Baulier L, Boukal D S, et al. Can fisheries-induced evolution shift reference points for fisheries management [J]? ICES Journal of Marine Science, 2013, 70(4): 707-721. doi: 10.1093/icesjms/fst077

    [45]

    Silva A, Faria S, Nunes C. Long-term changes in maturation of sardine, Sardina pilchardus, in Portuguese waters [J]. Scientia Marina, 2013, 77(3): 429-438. doi: 10.3989/scimar.03852.03A

    [46]

    van Wijk S J, Taylor M I, Creer S, et al. Experimental harvesting of fish populations drives genetically based shifts in body size and maturation [J]. Frontiers in Ecology and the Environment, 2013, 11(4): 181-187. doi: 10.1890/120229

    [47]

    Kokkonen E, Vainikka A, Heikinheimo O. Probabilistic maturation reaction norm trends reveal decreased size and age at maturation in an intensively harvested stock of pikeperch Sander lucioperca [J]. Fisheries Research, 2015(167): 1-12. doi: 10.1016/j.fishres.2015.01.009

    [48]

    Morbey Y E, Mema M. Size-selective fishing and the potential for fisheries-induced evolution in lake whitefish [J]. Evolutionary Applications, 2018, 11(8): 1412-1424. doi: 10.1111/eva.12635

    [49]

    Hixon M A, Johnson D W, Sogard S M. BOFFFFs: on the importance of conserving old-growth age structure in fishery populations [J]. ICES Journal of Marine Science, 2014, 71(8): 2171-2185. doi: 10.1093/icesjms/fst200

    [50]

    Feiner Z S, Chong S C, Knight C T, et al. Rapidly shifting maturation schedules following reduced commercial harvest in a freshwater fish [J]. Evolutionary Applications, 2015, 8(7): 724-737. doi: 10.1111/eva.12285

    [51]

    Bailey P E, Hubert W A. Factors associated with stocked cutthroat trout populations in high-mountain lakes [J]. North American Journal of Fisheries Management, 2003, 23(2): 611-618. doi: 10.1577/1548-8675(2003)023<0611:FAWSCT>2.0.CO;2

    [52]

    Lyons J, Kanehl P D, Day D M. Evaluation of a 356-mm minimum-length limit for smallmouth bass in Wisconsin streams [J]. North American Journal of Fisheries Management, 1996, 16(4): 952-957. doi: 10.1577/1548-8675(1996)016<0952:EOAMML>2.3.CO;2

    [53]

    Allen M S, Pine W E Ⅲ. Detecting fish population responses to a minimum length limit: effects of variable recruitment and duration of evaluation [J]. North American Journal of Fisheries Management, 2000, 20(3): 672-682. doi: 10.1577/1548-8675(2000)020<0672:DFPRTA>2.3.CO;2

    [54]

    Stone C, Lott J. Use of a minimum length limit to manage walleyes in lake francis case, South Dakota [J]. North American Journal of Fisheries Management, 2002, 22(3): 975-984. doi: 10.1577/1548-8675(2002)022<0975:UOAMLL>2.0.CO;2

    [55]

    Berkeley S A, Hixon M A, Larson R J, et al. Fisheries sustainability via protection of age structure and spatial distribution of fish populations [J]. Fisheries, 2004, 29(8): 23-32. doi: 10.1577/1548-8446(2004)29[23:FSVPOA]2.0.CO;2

    [56]

    Rouyer T, Ottersen G, Durant J M, et al. Shifting dynamic forces in fish stock fluctuations triggered by age truncation [J]? Global Change Biology, 2011, 17(10): 3046-3057. doi: 10.1111/j.1365-2486.2011.02443.x

    [57]

    Rouyer T, Sadykov A, Ohlberger J, et al. Does increasing mortality change the response of fish populations to environmental fluctuations [J]? Ecology Letters, 2012, 15(7): 658-665. doi: 10.1111/j.1461-0248.2012.01781.x

    [58]

    Planque B, Fromentin J M, Cury P, et al. How does fishing alter marine populations and ecosystems sensitivity to climate [J]? Journal of Marine Systems, 2010, 79(3/4): 403-417.

    [59]

    Hutchings J A. Collapse and recovery of marine fishes [J]. Nature, 2000(406): 882-885. doi: 10.1038/35022565

    [60]

    Penczak T, Głowacki Ł, Galicka W, et al. A long-term study (1985—1995) of fish populations in the impounded Warta River, Poland [J]. Hydrobiologia, 1998, 368(1): 157-173.

图(5)  /  表(1)
计量
  • 文章访问数:  0
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-09
  • 修回日期:  2024-01-25
  • 网络出版日期:  2024-03-10
  • 刊出日期:  2024-08-14

目录

    /

    返回文章
    返回