原生动物的捕食作用对水细菌的影响

周可新, 许木启, 曹宏

周可新, 许木启, 曹宏. 原生动物的捕食作用对水细菌的影响[J]. 水生生物学报, 2003, 27(2): 191-195.
引用本文: 周可新, 许木启, 曹宏. 原生动物的捕食作用对水细菌的影响[J]. 水生生物学报, 2003, 27(2): 191-195.
ZHOU Ke-Xin, XU Mu-Qi, CAO Hong. INFLUENCE OF PROTOZOAN GRAZING ON AQUATIC BACTERIA[J]. ACTA HYDROBIOLOGICA SINICA, 2003, 27(2): 191-195.
Citation: ZHOU Ke-Xin, XU Mu-Qi, CAO Hong. INFLUENCE OF PROTOZOAN GRAZING ON AQUATIC BACTERIA[J]. ACTA HYDROBIOLOGICA SINICA, 2003, 27(2): 191-195.

原生动物的捕食作用对水细菌的影响

基金项目: 

国家自然科学基金资助项目(30170159,39970138)

中国科学院知识创新工程重要方向项目(KSCX2-SW-102)

中国科学院西部创新项目(KSCX1-07-03-B)的部分研究内容

中国科学院知识创新工程领域前沿项目资助

INFLUENCE OF PROTOZOAN GRAZING ON AQUATIC BACTERIA

  • 摘要: 原生动物和水细菌关系密切,Sanders等[1]指出无论在淡水或海洋生态系统中,细菌和鞭毛虫的数量有着较为稳定的比例 (约 1000:1).
  • [1] Sanders RW, Caron DA. Relationships between bacteria and heterotrophic nanoplankton in marine and fresh waters: An inter-ecosystem comparison[J]. Mar Ecol Prog Ser, 1992,86: 1-14[2] Nakano SI. The role of bacterivorous flagellates in the phosphorous cycling in lake Biwa, Japan[J]. Rep Suwa Hydrobiol, 1995, 9:53-60[3] Liu J K. Advanced hydrobiology[M]. Beijing: Science press. 1998,151-176.[刘建康. 高级水生生物学. 北京:科学出版社,1999,151-176][4] Fenchel TM, Jorgensen B. Detritus food chains of aquatic ecosystems: the role of bacteria[J]. Adv Microbial Ecology, 1977, 1: 1-58[5] Andersen P, Fenchel T. Bacterivory by microheterotrophic flagellates in seawater samples[J]. Limnol Oceanogr, 1985, 30: 198-202[6] Hahn MW, Hofle MG. Flagellate predation on a bacterial model community: Interplay of size-selective grazing, specific bacterial cell size, and bacterial community composition[J]. Appl Environ Microbiol, 1999,65: 4863-4872[7] Jürgens K, DeMott WR. Behavioral flexibility in prey selection by bacterivorous nanoflagellates[J]. Limnol Oceanogr, 1995,40: 1503-1507[8] Güde H. Grazing by protozoa as selection factor for activated sludge bacteria[J]. Microb Ecol, 1979, 5: 225-237[9] Jürgens K, Güde H. The potential importance of grazing-resistant bacteria in planktonic systems[J]. Mar Ecol Prog Ser, 1994,112: 169-188[10] Sime-Ngando T, Bouredier G, Amblard C, et al. Short-term variations in specific biovolumes of different bacterial forms in aquatic ecosystems[J]. Microb Ecol, 1991,21: 211-226[11] Jürgens K, Arndt H, Rothhaupt KO. Zooplankton-mediated changes of bacterial community structure[J]. Microb Ecol, 1994, 27: 27-42[12]Sommaruga R, Psenner R. Permanent presence of grazing-resistant bacteria in a hypertrophic lake[J]. Appl Environ Microbiol, 1995, 61: 3457-3459[13] Simek K, Vrba J, Pernthaler J, et al.Morphological and compositional shifts in an experimental bacterial community influenced by protists with contrasting feeding modes[J]. Appl Environ Microbiol, 1997, 63: 587-595[14] Jürgens K, Pernthaler J, Schalla S, et al. Morphological and compositional changes in a planktonic bacterial community in response to enhanced protozoan grazing[J]. Appl Environ Microbiol, 1999, 65: 1241-1250[15] Van Hannen EJ, Veninga M, Bloem J, et al. Genetic changes in the bacterial community structure associated with protistan grazers[J]. Arch Hydrobiol, 1999, 145: 24-38[16] Simek K, Kojecka P, Nedoma J, et al. Shifts in the bacterial community composition associated with different microzooplankton size fractions in a eutrophic reservoir[J]. Limnol Oceanogr,1999,44: 1634-1644[17] Güde H. Direct and indirect influences of crustacean zooplankton on bacterioplankton of Lake Constance [J]. Hydrobiologia,1988, 159:63-73[18] Schmaljohann R, Pollingher U, Berman T. Natural populations of bacteria in lake Kinneret: observations with scanning electron and epifluorescence microscopy [J]. Microb Ecol, 1987, 13: 1-12[19] Hahn MW, Moore ERB, Hofle MG. Bacterial filament formation, a defense mechanism against flagellate grazing, is growth rate controlled in bacteria of different phyla [J]. Appl Environ Microbiol, 1999, 65: 25-35[20] Shikano S, Luckinbill LS, Kurihara Y. Changes of traits in a bacterial population associated with protozoan predation [J]. Microb Ecol, 1990, 20: 75-84[21] Christoffersen K, Nybroe O, Jürgens K,et al. Measurement of bacterivory by heterotrophic nanoflagellates using immunofluorescence labelling of ingested cells [J]. Aquat Microb Ecol, 1997, 13: 127-134[22] Posch T, Simek K, Vrba J, et al. Predator-induced changes of bacterial size-structure and productivity studied on an experimental microbial community [J]. Aquat Microb Ecol, 1999, 18: 235-246[23] Hahn MW, Moore ERB, Hofle MG. Role of microcolony formation in the protistan grazing defense of the aquatic bacterium Pseudomonas sp. MWH1[J]. Microb Ecol, 2000, 39: 175-185[24] Pernthaler J, Posch T, Simek K, et al. Contrasting bacterial strategies to coexist with a flagellate predator in an experimental microbial assemblage [J]. Appl Environ Microbiol, 1997, 63: 596-601[25] Larsson P, Dodson S. Invited review-chemical communication in plankton animals [J]. Arch Hydrobiol, 1993, 129: 129-155[26] Hahn MW, Hofle MG. Grazing pressure by a bacterivorous flagellate reverse the relative abundance of Comamonas acidovorans PX54 and Vibrio strain CB5 in chemostat cocultures [J]. Appl Environ Microbiol, 1998, 64: 1910-1918[27] Lebaron P, Servais P, Troussellier M, et al. Changes in bacterial community structure in seawater mesocosms differing in their nutrient status [J]. Aqua Microb Ecol, 1999, 19: 255-267[28] Güde H. The role of grazing on bacteria in plankton succession. In: Sommer U Ed. Plankton Ecology. Succession in Plankton Communities [M]. Berlin: Springer, 1989, 337-369[29] Hahn MW, Hofle MG. Grazing of protozoa and its effect on populations of aquatic bacteria [J]. FEMS Microbiol Ecol, 2001, 35: 113-121[30] Pernthaler J, Sattler B, Simek K, et al. Top-down effects on the size-biomass distribution of a freshwater bacterioplankton community [J]. Aquat Microb Ecol, 1996, 10: 255-263[31] Psenner R, Sommaruga R. Are rapid changes in bacterial biomass caused by shifts from topdown to bottom-up control [J]? Limnol Oceanogr, 1992, 37(5): 1092-1100[32] Weinbauer M, Hofle MG. Significance of viral lysis and flagellate grazing as controlling factors of bacterioplankton production in an eutrophic lake [J]. Appl Environ Microbiol, 1998, 64: 431-438[33] Hofle MG, Dominik K, Haas H. Seasonal dynamics of bacterioplankton community structure in a eutrophic lake as detected by 5S rRNA analysis [J]. Appl Environ Microbiol, 1999, 65: 3164-3174[34] Verhagen FJM, Laanbroek HJ. Effects of grazing by flagellates on competition for ammonium between nitrifying and heterotrophic bacteria in chemostats [J]. Appl Environ Microbiol, 1992, 58: 1962-1969[35] Simek K, Macek M, Seda J, et al. Possible food chain relationships between bacterioplankton, protozoans, and cladocerans in a reservoir [J]. Int Rev Ges Hydrobiol, 1990, 75: 583-596[36] Pussard M. Predation of the microflora, action of protozoa on the dynamics of bacteria population [J]. Protistologica, 1986, 22: 105-110[37] Caron DA, Goldman JC, Dennett MR. Experimental demonstration of the roles of bacteria and bacterivorous protozoa in plankton nutrient cycles [J]. Hydrobiologia, 1988, 159: 27-40[38] Gorgio PA, Gasol JM, Vaque D, et al. Bacterioplankton community structure: protists control net production and the proportion of active bacteria in a coastal marine community [J]. Limnol Oceanogr, 1996,41: 1169 -1179[39] Gasol JM, del Gorgio PA, Massana R, et al. Active versus inactive bacteria: size-independence in a coastal marine plankton community [J]. Mar Ecol Prog Ser, 1995, 128: 91-97

    Sanders RW, Caron DA. Relationships between bacteria and heterotrophic nanoplankton in marine and fresh waters: An inter-ecosystem comparison[J]. Mar Ecol Prog Ser, 1992,86: 1-14[2] Nakano SI. The role of bacterivorous flagellates in the phosphorous cycling in lake Biwa, Japan[J]. Rep Suwa Hydrobiol, 1995, 9:53-60[3] Liu J K. Advanced hydrobiology[M]. Beijing: Science press. 1998,151-176.[刘建康. 高级水生生物学. 北京:科学出版社,1999,151-176][4] Fenchel TM, Jorgensen B. Detritus food chains of aquatic ecosystems: the role of bacteria[J]. Adv Microbial Ecology, 1977, 1: 1-58[5] Andersen P, Fenchel T. Bacterivory by microheterotrophic flagellates in seawater samples[J]. Limnol Oceanogr, 1985, 30: 198-202[6] Hahn MW, Hofle MG. Flagellate predation on a bacterial model community: Interplay of size-selective grazing, specific bacterial cell size, and bacterial community composition[J]. Appl Environ Microbiol, 1999,65: 4863-4872[7] Jürgens K, DeMott WR. Behavioral flexibility in prey selection by bacterivorous nanoflagellates[J]. Limnol Oceanogr, 1995,40: 1503-1507[8] Güde H. Grazing by protozoa as selection factor for activated sludge bacteria[J]. Microb Ecol, 1979, 5: 225-237[9] Jürgens K, Güde H. The potential importance of grazing-resistant bacteria in planktonic systems[J]. Mar Ecol Prog Ser, 1994,112: 169-188[10] Sime-Ngando T, Bouredier G, Amblard C, et al. Short-term variations in specific biovolumes of different bacterial forms in aquatic ecosystems[J]. Microb Ecol, 1991,21: 211-226[11] Jürgens K, Arndt H, Rothhaupt KO. Zooplankton-mediated changes of bacterial community structure[J]. Microb Ecol, 1994, 27: 27-42[12]Sommaruga R, Psenner R. Permanent presence of grazing-resistant bacteria in a hypertrophic lake[J]. Appl Environ Microbiol, 1995, 61: 3457-3459[13] Simek K, Vrba J, Pernthaler J, et al.Morphological and compositional shifts in an experimental bacterial community influenced by protists with contrasting feeding modes[J]. Appl Environ Microbiol, 1997, 63: 587-595[14] Jürgens K, Pernthaler J, Schalla S, et al. Morphological and compositional changes in a planktonic bacterial community in response to enhanced protozoan grazing[J]. Appl Environ Microbiol, 1999, 65: 1241-1250[15] Van Hannen EJ, Veninga M, Bloem J, et al. Genetic changes in the bacterial community structure associated with protistan grazers[J]. Arch Hydrobiol, 1999, 145: 24-38[16] Simek K, Kojecka P, Nedoma J, et al. Shifts in the bacterial community composition associated with different microzooplankton size fractions in a eutrophic reservoir[J]. Limnol Oceanogr,1999,44: 1634-1644[17] Güde H. Direct and indirect influences of crustacean zooplankton on bacterioplankton of Lake Constance [J]. Hydrobiologia,1988, 159:63-73[18] Schmaljohann R, Pollingher U, Berman T. Natural populations of bacteria in lake Kinneret: observations with scanning electron and epifluorescence microscopy [J]. Microb Ecol, 1987, 13: 1-12[19] Hahn MW, Moore ERB, Hofle MG. Bacterial filament formation, a defense mechanism against flagellate grazing, is growth rate controlled in bacteria of different phyla [J]. Appl Environ Microbiol, 1999, 65: 25-35[20] Shikano S, Luckinbill LS, Kurihara Y. Changes of traits in a bacterial population associated with protozoan predation [J]. Microb Ecol, 1990, 20: 75-84[21] Christoffersen K, Nybroe O, Jürgens K,et al. Measurement of bacterivory by heterotrophic nanoflagellates using immunofluorescence labelling of ingested cells [J]. Aquat Microb Ecol, 1997, 13: 127-134[22] Posch T, Simek K, Vrba J, et al. Predator-induced changes of bacterial size-structure and productivity studied on an experimental microbial community [J]. Aquat Microb Ecol, 1999, 18: 235-246[23] Hahn MW, Moore ERB, Hofle MG. Role of microcolony formation in the protistan grazing defense of the aquatic bacterium Pseudomonas sp. MWH1[J]. Microb Ecol, 2000, 39: 175-185[24] Pernthaler J, Posch T, Simek K, et al. Contrasting bacterial strategies to coexist with a flagellate predator in an experimental microbial assemblage [J]. Appl Environ Microbiol, 1997, 63: 596-601[25] Larsson P, Dodson S. Invited review-chemical communication in plankton animals [J]. Arch Hydrobiol, 1993, 129: 129-155[26] Hahn MW, Hofle MG. Grazing pressure by a bacterivorous flagellate reverse the relative abundance of Comamonas acidovorans PX54 and Vibrio strain CB5 in chemostat cocultures [J]. Appl Environ Microbiol, 1998, 64: 1910-1918[27] Lebaron P, Servais P, Troussellier M, et al. Changes in bacterial community structure in seawater mesocosms differing in their nutrient status [J]. Aqua Microb Ecol, 1999, 19: 255-267[28] Güde H. The role of grazing on bacteria in plankton succession. In: Sommer U Ed. Plankton Ecology. Succession in Plankton Communities [M]. Berlin: Springer, 1989, 337-369[29] Hahn MW, Hofle MG. Grazing of protozoa and its effect on populations of aquatic bacteria [J]. FEMS Microbiol Ecol, 2001, 35: 113-121[30] Pernthaler J, Sattler B, Simek K, et al. Top-down effects on the size-biomass distribution of a freshwater bacterioplankton community [J]. Aquat Microb Ecol, 1996, 10: 255-263[31] Psenner R, Sommaruga R. Are rapid changes in bacterial biomass caused by shifts from topdown to bottom-up control [J]? Limnol Oceanogr, 1992, 37(5): 1092-1100[32] Weinbauer M, Hofle MG. Significance of viral lysis and flagellate grazing as controlling factors of bacterioplankton production in an eutrophic lake [J]. Appl Environ Microbiol, 1998, 64: 431-438[33] Hofle MG, Dominik K, Haas H. Seasonal dynamics of bacterioplankton community structure in a eutrophic lake as detected by 5S rRNA analysis [J]. Appl Environ Microbiol, 1999, 65: 3164-3174[34] Verhagen FJM, Laanbroek HJ. Effects of grazing by flagellates on competition for ammonium between nitrifying and heterotrophic bacteria in chemostats [J]. Appl Environ Microbiol, 1992, 58: 1962-1969[35] Simek K, Macek M, Seda J, et al. Possible food chain relationships between bacterioplankton, protozoans, and cladocerans in a reservoir [J]. Int Rev Ges Hydrobiol, 1990, 75: 583-596[36] Pussard M. Predation of the microflora, action of protozoa on the dynamics of bacteria population [J]. Protistologica, 1986, 22: 105-110[37] Caron DA, Goldman JC, Dennett MR. Experimental demonstration of the roles of bacteria and bacterivorous protozoa in plankton nutrient cycles [J]. Hydrobiologia, 1988, 159: 27-40[38] Gorgio PA, Gasol JM, Vaque D, et al. Bacterioplankton community structure: protists control net production and the proportion of active bacteria in a coastal marine community [J]. Limnol Oceanogr, 1996,41: 1169 -1179[39] Gasol JM, del Gorgio PA, Massana R, et al. Active versus inactive bacteria: size-independence in a coastal marine plankton community [J]. Mar Ecol Prog Ser, 1995, 128: 91-97

计量
  • 文章访问数:  944
  • HTML全文浏览量:  0
  • PDF下载量:  651
  • 被引次数: 0
出版历程
  • 收稿日期:  2002-03-20
  • 修回日期:  2002-05-12
  • 发布日期:  2003-03-24

目录

    /

    返回文章
    返回