固定化微绿球藻去除NH4+-N、PO43--P效果的研究
STUDY ON REMOVAL RATE OF NH4+-N AND PO43--P BY IMMOBILIZED NANNOCHLOROPSIS OCULATA
-
摘要: 为了探究固定化微绿球藻(Nannochloropsis oculata)去除污水中NH4+-N、PO43--P的效果,采用海藻酸钠固定化包埋技术进行实验。开展了固定化藻球大小、藻细胞包埋密度、藻球投放质量及充气培养条件对NH4+-N、PO43--P去除效果的单因子试验研究。结果表明,固定化藻球大小、藻细胞包埋密度、藻球投放质量和充气培养条件对NH4+-N、PO43--P的去除效果影响显著(P0.05)。藻球直径3.5 mm时生长速率(K)值最大(0.3320.002),同时NH4+-N、PO43--P去除率效果最佳,分别为(75.083.83)%和(80.803.81)%;藻细胞包埋密度100104 cells/ball时K值最大(0.3300.033),而NH4+-N、PO43--P去除率则以藻细胞包埋密度300104 cells/ball组为佳,分别达(87.200.43)%和(82.581.72)%,但考虑单位藻细胞去除率,包埋密度以100104 cells/ball为宜;随着藻球用量的增加K值下降,10 g/L组K值最大(0.3010.02)、50 g/L组K值最小(0.1930.01),投放量30和50 g/L时NH4+-N去除率较高分别为(84.120.78)%和(84.630.45)%,30 g/L组PO43--P去除率最高达(77.131.43)%。综合考虑,藻球投放量选用30 g/L为宜;充气条件培养K值、NH4+-N和PO43--P去除率显著(P0.05)高于不充气,K值分别为(0.3060.006)和(0.1770.010);NH4+-N去除率分别为(85.930.45)%和(49.320.45)%;PO43--P去除率分别为(66.665.00)%和(46.292.12)%。研究优化了微绿球藻固定化条件:固定化微绿球藻应进行充气培养,藻球规格3.5 mm、藻细胞包埋密度100104 cells/ball、藻球投放量30 g/L。Abstract: Microalgae Nannochloropsis oculata, immobilized with sodium alginate, was used to explore its removal efficiency of NH4+-N and PO43--P from artificial sewage water. Algae ball size, cell densities, dosages of algae balls, and aeration cultured were applied in the single-factor. The results showed that all these conditions significant impact the removal of of NH4+-N and PO43--P. The growth rate of K value achieved the highest value (0.3320.002) when the diameter was 3.5 mm; the removal rate of NH4+-N and PO43--P were the highest one at the diameter was 3.5 mm, which were (75.083.83)% and (80.803.81)%, respectively. The maximum of the growth K values was (0.3300.033) with the density of 100104 cells/ball. The highest NH4+-N and PO43--P removal rate were (87.200.43)% and (82.581.72)%, respectively, at the group of 300104 cells/ball; however, 100104 cells/ball was the optimal algal cell density based on unit algal cells removal ratio of NH4+-N and PO43--P. The increased algae balls dosages decreased the growth rate of K values. 10 g/L group had the maximum K values (0.3010.02) and 50 g/L had the minimum K values (0.1930.01). The removal rates of NH4+-N were (84.120.78)% and (84.630.45)% when the dosage was 30 g/L and 50 g/L, respectively. 30 g/L group had the highest PO43--P removal rate (77.131.43)%. Combined analyses revealed that 30 g/L was optimum for the dosages of algae balls. The K value, the removal of NH4+-N and PO43--P were significantly (P0.05) higher with aeration than non-aerated; K values were (0.3060.006) and (0.1770.010), respectively; NH4+-N removal rates were (85.930.45)% and (49.320.45)%, respectively; PO43--P removal rates were (66.665.00)% and (46.292.12)%, respectively. This study optimized the conditions of immobilized microalgae Nannochloropsis oculata:immobilized Nannochloropsis oculata should be aerated cultures; algae ball size was 3.5 mm; the algal cell density was 100104 cells/ball; and the dosage of algae balls was 30 g/L.
-
Keywords:
- Nannochloropsis oculata /
- Immobilization /
- NH4+-N /
- PO43--P /
- Removal rate
-
-
[1] Zhou W Z, Huo S H, Zhu S N, et al. Microalgae immobilization and application on resources reclamation[J]. Renewable Energy Resources, 2011, 29(4):90-94[周卫征, 霍书豪, 朱顺妮, 等. 微藻固定化技术及其在资源化中应用. 可再生能源, 2011, 29(4):90-94]
[2] Teresa M M, Martins A A, Caetano N S. Microalgae for biodiesel production and other applications:A review[J]. Renewable and Sustainable Energy Reviews, 2010, 14(1):217-232
[3] Xia S, Wan L L, Li A, et al. Research and development of commercial biomass products and bioactive compounds of microalgae[J]. Natural Product Research and Deve-lopment, 2014, 26(1):463-469[夏嵩, 万凌琳, 李爱, 等. 微藻生物质产品和生物活性物质的研究与开发. 天然产物研究与开发, 2014, 26(1):463-469]
[4] He S S, Gao B Y, Lei X Q, et al. Effects of initial nitrogen supply on the growth, morphology and lipid accumulation of oleaginous microalga Eustigmatos vischeri (eustigmatophyceae)[J]. Acta Hydrobilogica Sinica, 2015, 39(3):574-582[何思思, 高保燕, 雷学青, 等. 初始硝酸钠浓度对魏氏真眼点藻的生长、形态和油脂积累的影响. 水生生物学报, 2015, 39(3):574-582]
[5] Li A F, Liu R, Liu X J, et al. Effects of carbon sources on growth and fatty acid composition of Pinguiococcus pyrenoidosus CCMP[J]. Acta Hydrobiologica Sinica, 2009, 33(3):461-467[李爱芬, 刘然, 刘晓娟, 等. 碳源对粉核油球藻生长和脂肪酸组成特性的影响. 水生生物学报, 2009, 33(3):461-467]
[6] Naessens M, Leclerc J C, Tran-Minh C. Fiber optic biosensor using Chlorella vulgaris for determination of to-xic compounds[J]. Ecotoxicology and Environmental Safety, 2000, 46(2):181-185
[7] Li H, Li L, Zhang F Y. Research on biological immobilization technology in the treatment of nitrogencontained wastewater[J]. Industrial Safety and Environmental Protection, 2004, 30(6):18-20[李哗, 李凌, 张发有. 生物固定化技术在含氮废水处理中的研究. 工业安全与环保, 2004, 30(6):18-20]
[8] Touchette B W, Burkholder. Review of nitrogen and phosphorus metabolism in seagraasses[J]. Experimental Marine Biology and Ecology, 2000, 250(1-2):133-167
[9] Jiang X M. Effects of temperatures, light intensities and nitrogen concenrations on the growth and fatty acid compositions of Nannochloropsis oculata[J]. Marine Sciences, 2002, 26(8):9-12[蒋霞敏. 温度、光照、氮含量对微绿球藻生长及脂肪酸组成的影响. 海洋科学, 2002, 26(8):9-12]
[10] Zheng L, Huang X H, Liu C W, et al. Immobilization of Nannochloirs oculata in water quality control in shrimp mariculture[J]. Marine Sciences, 2005, 29(6):4-8[郑莲, 黄翔鹄, 刘楚吾, 等. 微绿球藻固定化培养及其对对虾养殖水质调控. 海洋科学, 2005, 29(6):4-8]
[11] Huang X H, Li C L, Zheng L, et al. Effects of the immoblized microalgae on the quantity dynamics of vibrio in the shrump ponds[J]. Acta Hydrobiologica Sinica, 2005, 29(6):684-688[黄翔鹄, 李长玲, 郑莲, 等. 固定化微藻对虾池弧菌数量动态的影响. 水生生物学报, 2005, 29(6):684-688]
[12] Yuan B, Sun L Q, Hou S C, et al. Preparation of immobi-lized Chlorella and impact on N and P uptake[J]. Marine Environmental Science, 2011, 30(6):804-808[袁冰, 孙利芹, 侯士昌, 等. 固定化小球藻的制备及对N、P吸收的影响. 海洋环境科学, 2011, 30(6):804-808]
[13] Yang H B, Yu Y, Zhang X H, et al. Study on immobilization culture of marine microalga Chlorella vulgaris[J]. Fisheries Science, 2001, 20(5):4-7[杨海波, 于媛, 张欣华, 等. 小球藻固定化培养的初步研究. 水产科学, 2001, 20(5):4-7]
[14] Mallick N, Rai L C. Influence of culture density, pH, organic acids and divalent cationson the removal of nutrients and metals by immobilized Anabaena doliolum and Chlorella vulgaris[J]. World Journal Microbiology Biotechnology, 1993, 9(2):196-201
[15] Jimntnez-Perez M V, Sanchez-Castillo P, Romera O, et al. Growth and nutrient removal in free and immobilized planktonic green algae isolated from pig manure[J]. Enzyme and Microbial Technology, 2004, 34(5):392-398
[16] Mao X X, Jiang X M, Qian P. Effect of immobilized Prochlorococcus culture on NH4+-N removal[J]. Chinese Journal of Ecology, 2014, 33(11):3075-3080[毛欣欣, 蒋霞敏, 钱鹏. 原绿球藻固定化培养去除NH4+-N的效果. 生态学杂志, 2014, 33(11):3075-3080]
[17] Gao P. Study on purification for livestock waste water by immobilized Microystis aeruginsa[D]. Sichuan Agricultural University. 2011[高鹏. 固定化铜绿微囊藻及其对畜禽废水的净化研究. 四川农业大学. 2011]
[18] Han T T, Fu G Q, Qi Z H, et al. Effects of aerated culture on growth, nutrient uptake, and biochemical composition in Sargassum hemiphyllum[J]. Journal of Fishery Sciences of China, 2015, 22(2):311-318[韩婷婷, 付贵权, 齐占会, 等. 充气培养对半页马尾藻生长、营养盐吸收和生化组成的影响. 中国水产科学, 2015, 22(2):311-318]
[19] Teng H L, Huang X X, Zhou H Q, et al. Effects of bubbling on growth, use of N and P and biochemical composition of the microalgae Dunaliella salina[J]. Journal of Fisheries of China, 2010, 34(6):942-948[滕怀丽, 黄旭雄, 周洪琪, 等. 充气方式对盐藻生长、细胞营养成分及氮磷营养盐利用的影响. 水产学报, 2010, 34(6):942-948]
[20] Svensen C, Egge J K, Stiansen J E. Can silicate and turbulence regulate the vertical flux of biogenic matter? A mesocosm study[J]. Marine Ecology Progress Series, 2001, 217:67-80
[21] Wu H Y, Gao K S, Du D H F. Short-term effects of solar ultraviolet radiation on the photochemical efficiency of Spirulina platensis in non-aerated and aerated cultures[J]. Acta Hydrobiologica Sinica, 2005, 29(6):673-677[吴红艳, 高坤山, 渡辺辉夫. 静止和充气培养条件下短期紫外辐射对钝顶螺旋藻光化学效率的影响. 水生生物学报, 2005, 29(6):673-677]
[22] Xu J T, Gao K S. Co-effects of CO2 and solar UVR on the growth and photosynthetic performance of the economic red macroalga Porphyra haitanensis[J]. Acta Oceanologica Sinica, 2013, 35(5):184-190[徐军田, 高坤山. CO2升高和阳光紫外线辐射对坛紫菜生长和光和特性的耦合效应. 海洋学报,2013, 35(5):184-190]
[23] Rodrguez-Maroto J M, Jimnez C, Aguilera, et al. Air bubbling results in carbon loss during microalgal cultivation in bicarbonate-enriched media:experimental data and process modeling[J]. Aquacultural Engineering, 2005, 32(s3-4):493-508
[24] Zou D H. Effects of elevated atmospheric CO2 on growth, photosynthesis and nitrogen metabolism in the economic brown seaweed, Hizikia fusiforme (Sargassaceae, Phaeop-hyta)[J]. Aquaculture, 2005, 250(3-4):726-735
-
期刊类型引用(11)
1. 张聪颖,薛瑞萍,彭瑞冰,韩庆喜,蒋霞敏. 4株微藻悬浮和固定培养生长和氮磷去除效果的比较. 生态科学. 2023(01): 76-82 . 百度学术
2. 吉莉,葛岐利,谢飞,张桂香,李渊,毕永红. 钛酸盐纳米材料介导下微藻净化生活污水的效应. 水生生物学报. 2023(07): 1087-1095 . 本站查看
3. 王绍迁,张恩栋,王思涵. 两种海藻对模拟海水养殖废水脱氮、除磷能力研究. 天津农业科学. 2022(04): 86-90 . 百度学术
4. 王祎哲,韩朝婕,卜世勋,韩旭,周文礼,贾旭颖. 固定化培养对小球藻生长、光合色素含量和叶绿素荧光参数的影响. 海洋湖沼通报. 2022(02): 57-63 . 百度学术
5. 李鲁丹,胡征宇,刘国祥. 毛枝藻对人工污水脱氮除磷能力的研究. 水生生物学报. 2019(01): 205-212 . 本站查看
6. 刘祥,王婧瑶,吴娟娟,彭飞,王凯军. 微藻固定化条件优化及其污水氨氮去除潜力分析. 环境科学. 2019(07): 3126-3134 . 百度学术
7. 马瑞阳,葛成军,王珺,章港,杨祺钧,王秋莹,陈奕军,郭晓东,彭丽成. 藻–菌单一及共生系统对海水养殖尾水的净化作用. 中国水产科学. 2019(06): 1126-1135 . 百度学术
8. 杨坤,侯冠军,赵秀侠,高远. 固定化栅藻对养殖废水的净化效果及生长研究. 渔业研究. 2019(06): 509-513 . 百度学术
9. 李陈清,王珺,陈国华,梁业松,梁俊,海靖涛. 固定化四爿藻的制备及其去除养殖废水中氮·磷的效果. 安徽农业科学. 2018(05): 81-84+104 . 百度学术
10. 丁玉惠,黄晨,陈锵,尤泽文,蒋霞敏,韩庆喜. 固定化新月菱形藻的制备及其对N、P吸收的影响. 宁波大学学报(理工版). 2017(03): 12-18 . 百度学术
11. 李美林,黄晓林,陈琛,刘伟成,曾国权,谢起浪. 模拟阴天对南美白对虾养殖水体理化及其生长指标的影响. 水生生物学报. 2017(03): 523-529 . 本站查看
其他类型引用(5)
计量
- 文章访问数: 1333
- HTML全文浏览量: 1
- PDF下载量: 81
- 被引次数: 16