

珠江浮游真核微型生物分子多样性及其与水环境的关系

朱昶宇 陆凯晖 伊珍珍

MOLECULAR DIVERSITIES OF PLANKOTIC MICROBIAL EUKARYOTES IN THE PEARL RIVER AND THEIR RELATIONSHIP WITH WATER ENVIRONMENT

ZHU Chang–Yu, LU Kai–Hui, YI Zhen–Zhen

在线阅读 View online: https://doi.org/10.7541/2020.022

您可能感兴趣的其他文章

Articles you may be interested in

珠江水系广西江段鱼类多样性空间分布特征

FISH DIVERSITY AND DISTRIBUTION PATTERN OF THE PEARL RIVER SYSTEM IN GUANGXI 水生生物学报. 2020, 44(4): 819-828 https://doi.org/10.7541/2020.098

珠江水系四大家鱼资源现状及空间分布特征研究

RESOURCE STATUS AND SPATIAL DISTRIBUTION CHARACTERISTICS OF FOUR MAJOR CHINESE CARPS IN THE PEARL RIVER

水生生物学报. 2017, 41(6): 1336-1344 https://doi.org/10.7541/2017.165

珠江水系鳗鲡资源空间分布特征研究

THE SPATIAL DISTRIBUTION OF ANGUILLA JAPONICA AND ANGUILLA MARMORATA IN THE PEARL RIVER 水生生物学报. 2019, 43(4): 847-853 https://doi.org/10.7541/2019.100

飘鱼微卫星位点的筛选及珠江流域5个地理群体的遗传多样性分析

MICROSATELLITE PRIMERS SCREENING AND GENETIC DIVERSITY ANALYSIS OF FIVE GEOGRAPHICAL POPULATIONS OF *PSEUDOLAUBUCA SINENSIS* IN THE PEARL RIVER BASIN 水生生物学报. 2020, 44(3): 501-508 https://doi.org/10.7541/2020.061

城市景观水体中固氮微生物多样性及固氮活性检测

THE DIVERSITY OF DIAZOTROPH AND THE ACTIVITY OF NITROGEN FIXATION IN URBAN LANDSCAPE WATER 水生生物学报. 2019, 43(5): 1139–1146 https://doi.org/10.7541/2019.134

海城碘泡虫(黏体动物门,黏孢子纲)补充描述及基于18S rDNA系统发育分析 SUPPLEMENTAL DESCRIPTION OF *MYXOBOLUS HAICHENGENSIS* CHEN, 1958 (MYXOZOA: MYXOSPOREA) INFECTING THE GILLS OF *ABBOTTINA RIVULARIS* BASILEWAKY: MORPHOLOGICAL AND MOLECULAR DATA 水生生物学报. 2018, 42(5): 950–955 https://doi.org/10.7541/2018.117

关注微信公众号,获得更多资讯信息

doi: 10.7541/2020.022

珠江浮游真核微型生物分子多样性及其与水环境的关系

朱昶宇 陆凯晖 伊珍珍

(华南师范大学生命科学学院,广州市亚热带生物多样性与环境生物监测重点实验室,广州 510631)

摘要:文章分别在丰水期和枯水期于珠江广州段和西江广东段43个样点采集水样,基于末端限制性长度多态性分析,研究了珠三角地区珠江水体的浮游真核微型生物的分子多样性及其群落结构和水体理化因子的关系。结果表明,西江广东段及珠江广州段水体氮和磷严重超标,水质状况堪忧。枯水期样本浮游真核微型生物香农威尔多样性指数普遍高于丰水期样本,西江广东段样本浮游真核微型生物多样性指数普遍高于珠江广州段样本。不同水期,不同区域的浮游真核微型生物群落结构均存在显著差异。珠江样点的浮游真核微型生物群落结构均与化学需氧量、高锰酸盐指数、氨氮、总氮、总磷高度相关;但不同水期、不同区域的浮游真核微型生物群落结构与理化因子相关系数有所差异。此外,分别筛选出了1个、8个末端限制性片段代表了潜在的敏感(Cystobasidium sp.或Protostelium nocturnum)、耐污(Acanthamoeba hatchetti、Babesia bicornis、Blastocystis sp.、Botryosphaerella sudetica、Candida caryicola、Coccomyxa simplex、Cryptomonas ovata、Filos agilis、Stenophora robusta、Sulfonecta uniserialis、Theileria sp.等)物种/类群。

关键词:珠江; 真核微型生物; 18S rDNA; T-RFLP; 分子多样性 中图分类号:Q178.1 文献标识码:A 文章编号:1000-3207(2020)01-0187-10

珠江水资源总量丰富,在全国七大江河中排名 第二,仅次于长江^[1]。然而伴随着珠三角地区经济 高速发展、城市规模不断扩大,各种工业和生活污 水、有机污染物不断迁移入珠江水域,珠江下游水 污染问题严重^[2]。珠江主要支流西江和北江在流经 广东省后污染状况同样不容乐观,西江水质总体较 差,支流贺江水体整体处于中营养水平,发生藻类 水华的潜在风险较高^[3]。珠江广州段和西江广东段 承载着珠三角地区重要的城市供水任务,与人民生 活质量以及当地经济发展息息相关,日趋严重的水 污染所导致的水质性缺水,已成为制约城市可持续 发展的一个重要因素^[4]。此外,珠江流域处于热带-亚热带地区,丰水期(4---9月)径流量大,占全年径流 总量的80%,而枯水期(10月至翌年3月)的水量较少, 仅占全年径流总量的24%^[5],这意味着对珠江水质 状况的研究有必要考虑丰水期及枯水期之间的差 异,但目前相关研究较少^[6,7]。

真核微型生物在水生生态系统中普遍存在,主

要包括原生动物、真核微藻、真菌及线虫等小型 动物^[8],由于生命周期短、敏感性强等特点,能迅速 反映水环境变化^[9,10]。例如,浮游藻类群落分布与 温度和营养盐变化显著相关^[11],某些原生动物类群 丰度与氨氮浓度呈显著正相关^[12]。徐润林等^[6]对珠 江广州市段的原生动物群落组成和群集过程的研 究发现,原生动物群落特征的变化与水质变化相吻 合,珠江在流经广州市区后水质发生了明显地恶 化。20世纪90年代,沈韫芬等^[13]便建立了适用于我 国淡水生态环境的原生生物(真核微型生物)群落监 测方法,并成为我国第一个淡水生物监测标准。近 年来,徐奎栋等^[14]将其改良并应用到海水环境监测 中,取得了较好的效果。

由于个体微小(通常为几十至几百微米),基于 形态鉴定基础的真核微型生物群落研究,高度依赖 于研究人员的鉴定经验,在一定程度上限制了原生 动物多样性研究及其在水质监测中的广泛应用。 这也是珠江水体真核微型生物群落结构与环境因

收稿日期: 2019-01-23;修订日期: 2019-08-17

基金项目: 广州市科技计划项目珠江科技新星(201610010162)资助 [Supported by the Pearl River Science and Technology Nova Program of Guangzhou (201610010162)]

作者简介:朱昶宇(1995—),男,江西赣州人;硕士研究生;主要从事微生物生态学研究。E-mail: zhuchangyu@m.scnu.edu.cn 通信作者: 伊珍珍(1981—),女,山东淄博人;教授;主要从事原生动物学研究。E-mail: zyi@scnu.edu.cn

子的关系研究较少的重要原因之一^[3, 6, 15]。末端限 制性片段长度多态性分析(Terminal restriction fragment length polymorphism analysis, T-RFLP)可以定 性和定量的进行微生物群落结构分析及不同群落 结构间的比较^[16]。目前, T-RFLP被广泛应用于水 体微生物多样性及其与水环境关系的研究中,例 如:环境因素对微生物的群落结构和功能的影响^[17], 河流生态系统的健康评价^[18],指示生物的筛选^[19]。

本文通过T-RFLP研究了珠三角地区珠江丰水 期及枯水期浮游真核微型生物多样性,对比分析了 不同时期、不同区域真核微型生物的群落结构及 其与环境因子的关系,并筛选了潜在的敏感种和耐 污种。以期较为全面地了解珠三角地区珠江水体 中真核微型生物的动态变化,为后续珠三角地区珠 江水质监测提供可靠的数据参考。

1 材料与方法

1.1 水样采集

采样点分为珠江广州段(G)和西江广东段(X), 分别在其丰水期(2016年6月—2016年9月)和枯水期 (2016年10月—2017年1月)采集水样,使用有机玻璃 采水器采集表层水(30 cm—1 m)。其中,丰水期设 置了40个样点(西江广东段21个,珠江广州段19个), 枯水期设置了43个样点(西江广东段21个,珠江广 州段22个,图1)。

1.2 水质分析

现场使用便携式多参数测量仪(ORION 520M-01A)测定采样位点的水温(Temperature, Temp)、 pH、溶解氧(Dissolved oxygen, DO)和盐度(Salinity)。其余理化指标参照《Water Analysis Hand-

图 1 采样点分布 Fig. 1 Locations of sampling sites

book》(美国哈希公司)于实验室测定,总氮(Total nitrogen, TN)的测定采用过硫酸盐氧化法(0.5—25.0 mg/L);氨氮(Ammonia nitrogen, AN)的测定采用USEPA纳氏试剂法(0.02—2.5 mg/L)或水杨酸法 (0.4—50 mg/L);总磷(Total phosphorus, TP)的测定 采用USEPA PhosVer 3抗坏血酸法(0.06—3.5 mg/L); 化学需氧量(Chemical oxygen demand, COD_{Cr})的测定采用USEPA消解比色法(3—150 mg/L); 高锰酸盐指数(Permanganate index, COD_{Mn})的测定采用高 锰酸盐法(0.5—5.0 mg/L)。

1.3 生物富集与DNA提取

将200 mL水体抽滤到0.8 μm滤膜(美国颇尔公司)上,用灭菌镊子将滤膜取下,在超净工作台上用 灭菌剪刀将滤膜剪碎,使用PowerSoil DNA Isolation Kit (美国Mobio)进行环境总DNA提取。

1.4 末端限制性片段长度多态性分析(T-RFLP)

利用引物TAReuk454FWD1 (5'-CCAGCA (G/C)C(C/T)GCGGTAATTCC-3'), TAReukREV3 (5'-ACTTTCGTTCTTGAT(C/T)(A/G)A-3')^[20]扩增 真核微型生物18S rDNA的V4区。PCR体系为: 5× FastPfu Buffer, 2.5 mmol/L dNTPs, 1U FastPfu DNA聚合酶(北京全式金生物技术有限公司), 引物 各5 μ mol/L, 约10 ng基因组DNA, 反应体系总量为 20 μ L。PCR反应程序: 95℃预变性5mir; 95℃变性 30s, 55℃退火30s, 72℃延伸45s, 共27个循环; 最后 72℃延伸10min, 终止于4℃。PCR产物用1%琼脂 糖电泳检验扩增效果, 并采用超薄DNA产物纯化试 剂盒DP203-02(北京天根生化科技有限公司)纯化。

预实验选用了*Apa* I、*Bam*H I、*EcoR* I、 *Hind* III、*Hinf* I、*Hae* III等限制性核酸内切酶进 行处理,根据酶切效率、区分能力等因素,最终选 取*Hae* III构建酶切体系:10 μL回收产物,2 μL QC缓冲液,0.4 μL *Hae* III酶(日本TaKaRa公司)和 7.6 μL灭菌双蒸水。放置水浴锅中37℃温浴1h, 1%琼脂糖电泳检验酶切效果。最后将剩余酶切产 物进行毛细管电泳并检测荧光和荧光强度(上海生 工生物工程有限公司)。

1.5 数据分析

数据取整,保留50—500 bp内的末端限制性片段数据(T-RFs),看作是物种种类数。计算同一样品的所有峰度面积之和,以及各片段面积占所在样品总面积的比例,看作是物种丰度^[21]。

使用R语言(R-3.2.3)程序包Vegan^[22]计算多样 性指数,基于Bray-Curtis距离^[23]量化样本间群落结 构差异,使用Adonis进行组间差异显著性检验^[24], 并进行典范对应分析^[25]、蒙特卡罗检验(Monte

189

Carlo permutation test)^[26]。多样性指数包括物种数 (S), Shannon-Wiener指数(H')^[27]和Pielou指数(J')^[28]。 典范对应分析反映物种或样点与环境因子间的关 系。蒙特卡罗检验用于检验群落结构与理化因子 相关性是否显著(重复数为999)。

参考地表水环境质量标准《GB 3838—2002》, 综合丰水期及枯水期数据,按水质类别将水质状况 分为优(I、II类水质)、良(III类水)、轻度污染 (IV类水质)、中度污染(V类水质)及重度污染(劣 V类水质)。使用R语言indicspecies程序包^[29]进行 组间指示种分析,分别筛选了代表优(I、II类 水)及重度污染(劣V类水)潜在的敏感种和耐污种 的末端限制性片段。并使用MICA工具进行末端限 制性片段对应物种预测^[30]。使用R语言vegan^[22]程 序包中的corr.test功能对物种(T-RFs)和理化因子进 行Spearman秩相关分析,并使用corr.test检验其相关 性是否显著(重复数为999)。

2 结果

2.1 真核微型生物多样性

丰水期40个样本中共发现133个不同的末端限制性片段,代表了至少133个不同的物种。样点末端限制性片段数目最少为2个(GG2_1),最多为25个(XG5_1);香农威尔指数最小也为0.6734(GG2_1),最大为3.0611(XG5_1);均匀度指数最小为0.5564(XS5_1),最大为0.9715(GG2_1,表1)。由此可见,珠江广州段样本GG2_1物种组成单一,且末端限制性片段分布不均匀;而西江广东段样本XG5_1物种组成较为多样化,且末端限制性片段分布较为均匀。

枯水期43个样本中共发现167个不同的末端限制性片段,末端限制性片段数目最少为10个 (GC1_2、GG3_2、GN2_2、XN2_2),最多为29个 (XG1_2和XS1_2)。珠江广州段样本GN2_2的均匀 度指数最小(0.5375),香农威尔指数也最小(1.2377), 说明该样本物种组成单一,且T-RFs分布不均匀。 西江广东段样本XG1_2的均匀度指数最大(0.9493), 香农威尔指数也最大(3.1966),其末端限制性片段 数目虽多(29),但各个物种的数量相差不大,物种组 成较为多样化。

丰水期样本与枯水期样本的末端限制性片段数目与均匀度指数无显著差异,但是香农威尔指数存在显著差异(P<0.05,图 2a),枯水期样本多样性指数普遍高于丰水期样本(表 1)。珠江广州段样本与西江广东段样本多样性指数均存在显著差异(P<0.05,图 2b),西江广东段样本多样性指数普遍高于珠江

广州段样本(表 1)。

真核微型生物非度量多维尺度分析(图 3)显示, 丰水期40个样本(WS)较枯水期43个样本(DS)的分 布更为分散,珠江广州段41个样本(GZ)较西江广东 段42个样本(XJ)的分布更为分散。Adonis分析表明 丰水期与枯水期样本之间、珠江广州段与西江广 东段样本之间的真核微型生物群落结构均存在显 著差异(P<0.05,图 3)。

2.2 真核微型生物群落结构及其与理化因子的 关系

调查区域83个样本中,水质类别为优、良、轻度污染、中度污染和重度污染的样本分别为3、 7、9、7和57个。57个样本的总氮(TN)、氨氮 (AN)和总磷(TP)指标均超过地表水劣V类水标准, 为珠江水体主要污染指标。枯水期样本温度、pH、 盐度和总磷显著高于丰水期样本(P<0.05,图4a), 其余所测理化因子在枯水期和丰水期无显著差 异。西江广东段样本化学需氧量显著高于珠江广 州段样本(P<0.05,图4b),其余所测理化因子在西 江广东段和珠江广州段均无显著差异。

丰水期样本典范对应分析(图 5a)和相关性检 验(表 2)表明, 丰水期样本真核微型生物群落结构 与溶氧量(DO)、化学需氧量(COD_{Cr})、高锰酸盐指 数(COD_{Mn})、氨氮(AN)、总氮(TN)和总磷(TP)显著 相关(P<0.05),其中对群落结构影响最大的理化因 子是总磷(TP),相关系数 (r^2) 为0.7885,其次是氨氮 (AN), 相关系数为0.6976。其余理化因子相关系数 由大到小分别是高锰酸盐指数(COD_{Mn}, 0.6797)、 化学需氧量(COD_{Cr}, 0.6170)、溶氧量(DO, 0.5599)、总氮(TN, 0.5397)。枯水期样本典范对应 分析(图 5b)和相关性检验(表 2)表明,枯水期样本 真核微型生物群落结构受温度(Temp)、化学需氧 量(COD_{Cr})、高锰酸盐指数(COD_{Mn})、氨氮(AN)、 总氮(TN)和总磷(TP)的显著影响,其中受总磷 (TP)和高锰酸盐指数(COD_{Mn})影响最大,相关系数 分别是0.9289和0.7950,其次是化学需氧量(COD_{Cr}, 0.6815)、总氮(TN, 0.6638)、氨氮(AN, 0.6352)、溶 氧量(DO, 0.4449)和温度(TP, 0.1695)。与丰水期相 比,枯水期样本真核微生物群落结构与造成污染的 理化因子如总磷(TP)、总氮(TN)和化学需氧量 (COD_{cr})等的相关系数要大于丰水期, 且温度(Temp) 对枯水期样本真核微型生物群落结构有显著影响。

珠江广州段样本典范对应分析(图 5c)和相关 性检验(表 2)表明,珠江广州段样本真核微型生物 群落结构与温度(Temp)、溶氧量(DO)、化学需氧 量(COD_{Cr})、高锰酸盐指数(COD_{Mn})、氨氮(AN)、

	Tab. 1Diversity index of microbial eukaryotes						
丰水期 Wet season	末端限制性 片段数目S	香农威尔指数 H'	均匀度指数J'	枯水期 Dry season	末端限制性 片段数目S	香农威尔指数 H'	均匀度指数」"
GC1_1	9	1.608	0.7318	GC1_2	10	2.0652	0.8969
GC2_1	16	2.216	0.7993	GC2_2	13	2.1221	0.8273
GC3_1	9	1.3739	0.6253	GC3_2	15	1.9987	0.738
GC4_1	12	1.8551	0.7465	GC4_2	14	1.5333	0.581
_	_	_	_	GC5_2	17	2.4159	0.8527
_	_	_	_	GC6_2	20	2.7689	0.9243
_	_	_	_	GC7_2	21	2.6763	0.879
GG1_1	23	2.8175	0.8986	GG1_2	13	2.1689	0.8456
GG2_1	2	0.6734	0.9715	GG2_2	17	2.0793	0.7339
GG3_1	9	1.6692	0.7597	GG3_2	10	1.7488	0.7595
GJ1_1	12	2.068	0.8322	GJ1_2	22	2.2546	0.7294
GJ2_1	11	1.4899	0.6213	GJ2_2	18	1.8902	0.654
GJ3_1	10	1.8355	0.7971	GJ3_2	15	2.1987	0.8119
GN1_1	22	2.6622	0.8612	GN1_2	12	1.8717	0.7532
GN2_1	12	1.8629	0.7497	GN2_2	10	1.2377	0.5375
GN3_1	14	2.1524	0.8156	GN3_2	22	2.729	0.8829
GR1_1	16	2.0206	0.7288	GR1_2	12	1.4302	0.5756
GR2_1	12	1.7408	0.7005	GR2_2	18	2.4772	0.8571
GR3_1	12	1.9956	0.8031	GR3_2	12	1.7861	0.7188
GS1_1	9	1.4595	0.6643	GS1_2	16	1.5581	0.562
GS2_1	11	1.7814	0.7429	GS2_2	17	1.7799	0.6282
GS3_1	11	1.4508	0.605	GS3_2	16	2.2194	0.8005
XG1_1	12	2.04	0.821	XG1_2	29	3.1966	0.9493
XG2_1	21	2.7365	0.8988	XG2_2	12	1.9619	0.7895
XG3_1	15	2.1675	0.8004	XG3_2	22	2.7692	0.8959
XG4_1	14	2.055	0.7787	XG4_2	19	2.4304	0.8254
XG5_1	25	3.0611	0.951	XG5_2	15	1.9894	0.7346
XJ1_1	17	2.2633	0.7988	XJ1_2	14	2.2346	0.8467
XJ2_1	19	2.5793	0.876	XJ2_2	11	1.8417	0.768
XJ3_1	18	2.1775	0.7534	XJ3_2	12	1.9432	0.782
XJ4_1	13	1.8523	0.7222	XJ4_2	15	2.2064	0.8148
XJ5_1	12	1.9305	0.7769	XJ5_2	21	2.6664	0.8758
XN1_1	17	2.3056	0.8138	XN1_2	21	2.7569	0.9055
XN2_1	16	2.4022	0.8664	XN2_2	10	1.7982	0.7809
XN3_1	18	2.5455	0.8807	XN3_2	15	2.2528	0.8319
XN4_1	15	2.1885	0.8082	XN4_2	18	2.4169	0.8362
XN5_1	16	2.564	0.9248	XN5_2	13	2.0353	0.7935
XR1_1	17	2.3402	0.826	XR1_2	12	2.0757	0.8353
XS1_1	11	1.9654	0.8196	XS1_2	29	3.1842	0.9456
XS2_1	16	2.3648	0.8529	XS2_2	12	1.9814	0.7974
XS3_1	11	2.1321	0.8892	XS3_2	17	2.1603	0.7625
	16	2.1631	0.7802	XS4_2	18	2.3741	0.8214
XS5_1	6	0.997	0.5564	XS5_2	16	2.4252	0.8747

表1 真核微型生物多样性指数

注:S代表末端限制性片段数目,H'代表香农威尔指数,J'代表均匀度指数,一.丰水期缺失采样点

Note: S represents T-RF number, H' represents Shannon-Wiener index, J' represents evenness index, —. sampling sites absent in wet season

总氮(TN)和总磷(TP)显著相关(P < 0.05),其中对群 落结构影响最大的理化因子是高锰酸盐指数 (COD_{Mn}), 相关系数(r²)为0.8313, 其次是化学需氧 量(COD_c.),相关系数为0.7687。其余理化因子相关 系数由大到小分别是氨氮(AN, 0.6086)、总氮(TN, 0.4973)、总磷(TP, 0.1925)、温度(Temp, 0.1329)、 溶氧量(DO, 0.1294)。西江广东段样本典范对应分 析(图 5d)和相关性检验(表 2)表明,西江广东段样 本真核微型生物群落结构与溶氧量(DO)、化学需

氧量(COD_{Cr})、高锰酸盐指数(COD_{Mn})、氨氮 (AN)、总氮(TN)和总磷(TP)显著相关(P < 0.05),其 中对群落结构影响最大的理化因子是总磷(TP),相 关系数(r²)为0.9285,其次是高锰酸盐指数(COD_{Mn}), 相关系数为0.8722。其余理化因子相关系数由大到 小分别是氨氮(AN, 0.8681)、化学需氧量(COD_{Cr}, 0.8200)、总氮(TN, 0.8047)、溶氧量(DO, 0.2305)。 与珠江广州段样本相比,西江广东段样本真核微型 生物群落结构与理化因子相关系数普遍更大,但是

横轴表示多样性指数、纵轴代表lg(X+1)转化后的多样性指数值、P代表检验值、*表示显著性水平P<0.05

The horizontal axis represents diversity indexes, and vertical axis represents the values of diversity index transformed by lg(X+1), P represents test value, * indicates P<0.05

WS represents wet season, DS represents dry season, GZ represents Guangzhou Reach of the Pearl River, XJ represents Guangdong Reach of the Xijiang River

温度对西江广东段样本真核微型生物群落结构无显著影响(P>0.05)。

2.3 潜在指示物种筛选

为筛选潜在的对应水质指示物种,参考地表水 环境质量标准《GB 3838—2002》,在水质类为优 (I、II类水)、良(III类水)、轻度污染(IV类水质)、 中度污染(V类水质)、重度污染(劣V类水)的样本 组间进行组间指示末端限制性片段筛选(表 3)。筛 选出1个末端限制性片段,片段长度为76 bp,可能只 存在于"优"级水质,而在水质为其余类别的水体中 基本不存在或数量非常少。筛选出了8个末端限制 性片段,只存在或大量存在于"重度污染"水体中, 片段长度分别为83、117、192、235、376、377、 391和406 bp。基于数据库比对, 潜在的敏感物种可 能为后鞭类(Opisthokonta)的Cystobasidium sp. 或变 形类(Amoebozoa)的Protostelium nocturnum; 潜在 的耐污物种可能为后鞭类(Opisthokonta)的Candida carvicola、梅奇酵母科(Metschnikowiaceae)或酿酒 酵母目的未定科(Saccharomycetales incertae sedis) 物种;原始色素体生物(Archaeplastida)的Coccomyxa simplex、Botryosphaerella sudetica以及轮藻 科(Characeae)、衣藻科(Chlamydomonadaceae)物种; 变形类(Amoebozoa)的Acanthamoeba hatchetti; 囊 泡类(Alveolata)的Sulfonecta uniserialis、Stenophora robusta、Theileria sp.、Babesia bicornis以及 钟形虫科(Vorticellidae)和隐孢科(Cryptosporidiidae)物种; 隐藻类(Cryptophyceae)的Cryptomonas ovata; 不等鞭毛类(Stramenopiles)的Filos agilis和 Blastocystis sp.。

3 讨论

本研究T-RFLP数据表明, 丰水期与枯水期水 体中的真核微型生物香农威尔指数和群落结构存 在显著差异(图 2a、图 3a)。前人研究也表明季节 是影响真核微型生物群落组成的重要因素, 例如: Countway等^[31]报道同一样点不同季节的真核微型 生物物种组成有显著差异; 北太平洋东部海域的真 核微型生物群落存在显著的季节和年度差异^[32]。 与此同时, 本研究发现珠江广州段和西江广东段真 核微型生物多样性指数、群落结构也存在显著差 异(图 2b、图 3b), 表明地域甚至是小范围的地理位 置差异对真核微型生物多样性有着显著的影响。 同样, 先前文献报道, 青岛、厦门和湛江沿岸滩涂 真核微型生物群落结构存在显著差异^[33]; 美国黄石 公园不同样点间真核微型生物群落相似性较低^[34]。 考虑到时间和地域的差异对物种多样性有显著的

Fig. 4 The boxplots for physicochemical factors of different water seasons (a) and regions (b)

横轴代表理化因子,纵轴代表lg(X+1)转化后的理化因子值,P代表检验值,*表示显著性水平P<0.05

The horizontal axis represents physicochemical factors, and vertical axis represents the values of physicochemical factors transformed by lg(X+1), *P* represents test value. * indicates *P*<0.05

影响,我们建议在利用真核微型生物监测水质时, 必须建立在全面了解该地区不同时期、不同地点 的真核微型生物多样性的基础上。

我们的研究数据表明,珠江广州段和西江广东 段水体受到氮、磷的严重污染,普遍处于劣V类 (57个样本,占据了69%);丰水期总磷浓度普遍低于 枯水期,西江广东段化学需氧量浓度普遍高于珠江 广州段(图 4)。排序分析和相关性检验(图 5、表 2) 表明, 真核微型生物群落结构与化学需氧量、高锰酸盐指数、氨氮、总氮、总磷等水质监测相关理化因子显著相关, 能够较好地反映水质状况。化学需氧量和高锰酸盐指数代表着样点受有机物污染的程度^[35], 其对真核微型生物群落结构有着显著的影响^[36, 37]。过量的氨氮会影响细胞膜稳定性及酶水解反应, 导致生物代谢缓慢, 严重时可导致生物死亡^[38], 文献报道原生生物、金藻、硅藻与氨氮之

Fig. 5 Canonical correspondence analysis (CCA) between physicochemical factors and microbial eukaryotic community structures of wet season (a), dry season (b), Guangzhou Reach of the Pearl River (c) and Guangdong Reach of the Xijiang River (d) 绿色代表样本, 蓝线代表理化因子, CCA axis 1代表排序轴1, CCA axis 2代表排序轴2。Temp代表温度, DO代表溶氧量, pH代表酸碱 度, COD_{Cr}代表化学需氧量, COD_{Mn}代表高锰酸盐指数, AN代表氨氮, TN代表总氮, TP代表总磷

Samples are in green, physicochemical factors are represented by blue lines, the first axis is represented by CCA axis 1, the second axis is represented by CCA axis 2. Temp represents temperature, DO represents dissolved oxygen, pH represents acidity and alkalinity, COD_{Cr} represents chemical oxygen demand, COD_{Mn} represents permanganate index, AN represents ammonia nitrogen, TN represents total nitrogen, TP represents total phosphorus

表 2 真核微型生物群落结构与理化因子相关性检验

Tab. 2Correlation test between the microbial eukaryotic com-munity structures of samples and physicochemical factors

指标Index	丰水期We	t 枯水期Dry	· 珠江广州段	西江广东段
	season	season	Guangzhou	Aljiang
温度Temp	0.0021	0.1695*	0.1329*	0.0351
pН	0.0001	0.7469	0.0061	0.0089
盐度Salinity	0.0026	0.0005***	0.0026	0.0576
溶氧DO	0.5599***	0.4449***	0.1294*	0.2305***
化学需氧量 COD _{Cr}	0.6170***	0.6815***	0.7687***	0.8200***
高锰酸盐指 数COD _{Mn}	0.6797***	0.7950***	0.8313***	0.8722***
氨氮AN	0.6976***	0.6352***	0.6086***	0.8681***
总氮TN	0.5397***	0.6638***	0.4973***	0.8047***
总磷TP	0.7885***	0.9289***	0.1925*	0.9285*

注: 数字代表相关系数,*表示显著性水平P<0.05

Note: Number represents correlation coefficient, * indicates P < 0.05

表3 潜在的水质指示片段

Tab. 3 Potential indicative T-RFs

片段长度The length of T-RF	A	В	Р
优			
76	0.9465	0.2500	0.009**
重度污染			
83	0.9851	0.2222	0.033*
117	0.9934	0.2222	0.028*
192	1.0000	0.2222	0.032*
235	0.8198	0.2222	0.045*
376	1.0000	0.2222	0.027*
377	1.0000	0.2222	0.027*
391	1.0000	0.2222	0.035*
406	0.7552	0.3333	0.022*

注: *A*代表该片段仅在水质类别为优/重度污染的样本组间 存在的概率, *B*代表该片段在水质类别为优/重度污染的样本组 内存在的概率。*P*代表检验值,*表示显著性水平*P*<0.05

Note: A represents the probability that the T-RF were only present in high water quality samples/poor quality samples, B represents the probability that the T-RFs were detected among all high water quality samples/poor quality samples. P represents test value. * indicates P<0.05

间呈现显著正相关^[12]。总氮和总磷通过影响浮游 藻类的光合作用对其生长进行调控,从而又影响了 异养真核微型生物类群^[39—43]。总氮和总磷是导致 水体富营养化的主要理化因子^[44],此类营养盐主要 来源于工业废水和生活污水,而西江广东段与珠江 广州段周边工业废水和生活污水排放量巨大^[15]。 此外,本研究发现,研究区域总氮和总磷的季节性 变化不明显,但枯水期高于丰水期,这可能是由于 丰水期水量大,物理稀释作用导致总氮和总磷浓度 降低,也可能是因为丰水期水生生物活动频繁,大 量消耗了水体中的营养盐^[35]。

某些真核微型生物,会出现或大量存在于在不同污染程度的水域中,从而可以作为水质评判的指示物种。许恒龙等^[12]发现*Peridinium*(多甲藻虫属)的某些物种在较为清洁的水体中丰度较高,可作为潜在的敏感类群。杨金鹏等^[45]发现*Uronemella*(尾丝虫)在富营养水体中有较高的丰度,可作为潜在的耐污类群。本研究分别筛选出1个、8个末端限制性片段作为候选的敏感和耐污片段,并根据数据库给出了大致的物种/类群信息,但由于缺乏具体的碱基信息,这些片段具体代表哪些物种还有待进一步研究。

<u>致谢</u>:

感谢华南师范大学本科生张宝丹、陈静慧、 陈俊宇在部分样品采集和实验操作中给予的帮助。

参考文献:

- Liu Q, Ma J R, Su X L, et al. Dynamic changes of main water quality parameters in Pearl River (China) water system from 2006 to 2015 [J]. Pearl River, 2018, 39(12): 54-58, 67. [柳青, 马健荣, 苏晓磊, 等. 珠江水系2006-2015年主要水质参数动态变化 [J]. 人民珠江, 2018, 39(12): 54-58, 67.]
- [2] Chen M M. On the issues countermeasures to water pollution treatment in the Pearl River Basin [D]. Guangzhou: South China University of Technology, 2011. [陈明媚. 珠江流域水污染治理的问题与对策 [D]. 广州: 华南理 工大学, 2011.]
- [3] Gou T, Xu Z C, Li J, et al. Phytoplankton community structure and water quality assessment of Hejiang River, a branch of Xijiang River, Pearl River drainage basin [J]. Journal of Lake Sciences, 2015, 27(3): 412-420. [苟婷, 许振成, 李杰,等. 珠江流域西江支流贺江浮游藻类群 落特征及水质分析 [J]. 湖泊科学, 2015, 27(3): 412-420.]
- [4] Jiang T, Li K, Ke D. On the water environmental pollution and protection measures in the Guangzhou Section of Pearl River [J]. *Journal of Lake Sciences*, 2004, 16(3): 282-284. [江涛, 黎坤, 柯栋. 珠江广州段水环境问题与保护对策 [J]. 湖泊科学, 2004, 16(3): 282-284.]
- [5] Tong J. The generalizations and hydrological character analysis of Pearl River Basin [J]. Water Conservancy Science and Technology and Economy, 2007, 13(1): 31-33. [童娟. 珠江流域概况及水文特性分析 [J]. 水利科技与 经济, 2007, 13(1): 31-33.]
- [6] Xu R L, Bai Q S, Xie R W. PF unit protozoan community characteristics and the relation with the water quality in the Guangzhou Reach of the Pearl River [J]. *Acta Ecologica Sinica*, 2002, 22(4): 479-485. [徐润林, 白 庆笙, 谢瑞文. 珠江广州市段PFU原生动物群落特征及 其与水质的关系 [J]. 生态学报, 2002, 22(4): 479-485.]
- [7] Wang Z H, Hu R, Gu Y G, et al. Community structures of periphyticalgae in the Guangzhou reaches of the Pearl River and their relationship to water quality [J]. Acta Sci-

entiae Circumstantiae, 2009, **29**(7): 1510-1516. [王朝晖, 胡韧, 谷阳光, 等. 珠江广州河段着生藻类的群落结构 及其与水质的关系 [J]. 环境科学学报, 2009, **29**(7): 1510-1516.]

- [8] Bik H M, Sung W, De Ley P, et al. Metagenetic community analysis of microbial eukaryotes illuminates biogeographic patterns in deep-sea and shallow water sediments [J]. *Molecular Ecology*, 2012, 21(5): 1048-1059.
- [9] Foissner W. Evaluating water quality using protozoa and saprobity indexes [A]// John J L, Anthony T S (Eds.), Protocols in Protozoology [C]. Lawrence: Allen Press, 1992: B11.1-B11.20.
- [10] Chen M, Li X, Yang Q, et al. Soil eukaryotic microorganism succession as affected by continuous cropping of peanut-pathogenic and beneficial fungi were selected [J]. *PLoS One*, 2012, 7(7): e40659.
- [11] Muhid P, Davis T W, Bunn S E, *et al*. Effects of inorganic nutrients in recycled water on freshwater phytoplankton biomass and composition [J]. *Water Research*, 2013, 47(1): 384-394.
- [12] Xu H L. Ecology and toxicology of planktonic protists in semi-closed mariculture waters [D]. Qingdao: Ocean University of China, 2003. [许恒龙. 半封闭式海水养殖水体 中浮游原生生物的生态学与毒理学研究 [D]. 青岛: 中 国海洋大学, 2003.]
- [13] Shen Y F, Gu M R, Gong X J, et al. Modern Biomonitoring Techniques Using Freshwater Microbiota [M]. Beijing: China Architecture & Building Press, 1990: 524.
 [沈韫芬, 顾曼如, 龚循矩, 等. 微型生物监测新技术 [M]. 北京: 中国建筑工业出版社, 1990: 524.]
- [14] Xu K D, Choi J K, Yang E J, et al. Biomonitoring of coastal pollution status using protozoan communities with a modified PFU method [J]. *Marine Pollution Bulletin*, 2002, 44(9): 877-886.
- [15] Zhang J Y, Jiang J L, Liu Q, et al. The characteristics of microbial and phytoplankton community and water quality in the Guangzhou segment of Pearl River [J]. Journal of Hydroecology, 2011, 32(2): 38-46. [张俊逸, 蒋江峦, 刘擎, 等. 珠江广州段微生物和浮游植物群落与水质特 征研究 [J]. 水生态学杂志, 2011, 32(2): 38-46.]
- [16] Lueders T, Friedrich M W. Evaluation of PCR amplification bias by terminal restriction fragment length polymorphism analysis of small-subunit rRNA and mcrA genes by using defined template mixtures of methanogenic pure cultures and soil DNA extracts [J]. *Applied and Environmental Microbiology*, 2003, **69**(1): 320-326.
- [17] Yu Y, Wang X Y, Zhang P F. Spatial distribution of planktonic bacterial community and its relationship to water quality in Beiyun River [J]. Asian Journal of Ecotoxicology, 2012, 7(3): 337-344. [于洋, 王晓燕, 张鹏飞. 北运 河水体浮游细菌群落的空间分布特征及其与水质的关 系 [J]. 生态毒理学报, 2012, 7(3): 337-344.]
- [18] Huang Y, Shu Z Y. Bacterioplankton index of Biotic Integrity (BP-IBI): an approach for assessing river ecosystem health in Dianchi Watershed [J]. Environmental Science, 2013, 34(8): 3010-3018. [黄艺, 舒中亚. 基于浮游 细菌生物完整性指数的河流生态系统健康评价——以 滇池流域为例 [J]. 环境科学, 2013, 34(8): 3010-3018.]
- [19] Dong P, Sun Y J, Wang H Q, et al. Study of micro-ecosystem of the Wenyu River by terminal restriction fragment length polymorphism analysis [J]. China Environmental Science, 2011, 31(4): 631-636. [董萍, 孙寓姣, 王

红旗,等.利用T-RFLP技术对温榆河微生物群落结构研 究 [J]. 中国环境科学, 2011, 31(4): 631-636.]

- [20] Stoeck T, Bass D, Nebel M, et al. Multiple marker parallel tag environmental DNA sequencing reveals a highly complex eukaryotic community in marine anoxic water [J]. Molecular Ecology, 2010(19): 21-31.
- [21] Angela D K, Dan J S, Barbara J B, et al. Web-based phylogenetic assignment tool for analysis of terminal restriction fragment length polymorphism profiles of microbial communities [J]. Applied and environmental microbiology, 2003, 69(11): 6768-6776.
- [22] Oksanen J, Kindt R, Legendre P, et al. The vegan package [J]. Community Ecology Package, 2007(10): 631-637.
- [23] Bray J R, Curtis J T. An ordination of the upland forest communities of southern Wisconsin [J]. *Ecological Monographs*, 1957(27): 325-349.
- [24] Clarke K R, Somerfield P J, Gorley R N. Testing of null hypotheses in exploratory community analyses: similarity profiles and biota-environment linkage [J]. *Journal of Experimental Marine Biology and Ecology*, 2008, 366(1-2): 56-69.
- [25] Ter Braak C J. Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis [J]. *Ecology*, 1986, 67(5): 1167-1179.
- [26] Manly B F. Randomization, bootstrap and Monte Carlo methods in biology [M]. CRC Press, 1997: 330.
- [27] Shannon C E. The mathematical theory of communication [J]. *Bell System Technical Journal*, 1948, 27(3): 379-423.
- [28] Pielou E C. Species-diversity and pattern-diversity in the study of ecological succession [J]. *Journal of Theoretical Biology*, 1966, **10**(2): 370-383.
- [29] Cáceres M D, Legendre P. Associations between species and groups of sites: indices and statistical inference [J]. *Ecology*, 2009, 90(12): 3566-3574.
- [30] Shyu C, Soule T, Bent S J, et al. MiCA: A web-based tool for the analysis of microbial communities based on terminal-restriction fragment length polymorphisms of 16S and 18S rRNA genes [J]. *Microbial Ecology*, 2007, 53(4): 562-570.
- [31] Countway P D, Vigil P D, Schnetzer A, et al. Seasonal analysis of protistan community structure and diversity at the USC Microbial Observatory (San Pedro Channel, North Pacific Ocean) [J]. Limnology and Oceanography, 2010, 55(6): 2381-2396.
- [32] Kim D Y, Countway P D, Jones A C, et al. Monthly to interannual variability of microbial eukaryote assemblages at four depths in the eastern North Pacific [J]. *The ISME Journal*, 2014, 8(3): 515-530.
- [33] Zhang W, Pan Y, Yang J, et al. The diversity and biogeography of abundant and rare intertidal marine microeukaryotes explained by environment and dispersal limitation [J]. Environmental Microbiology, 2018, 20(2): 462-476.
- [34] Meadow J F, Zabinski C A. Spatial heterogeneity of eukaryotic microbial communities in an unstudied geothermal diatomaceous biological soil crust: Yellowstone National Park, WY, USA [J]. *FEMS Microbiology Ecology*, 2012, 82(1): 182-191.
- [35] Sun Z, Li G, Wang C, et al. Community dynamics of prokaryotic and eukaryotic microbes in an estuary reservoir [J]. Scientific reports, 2014, 4: 6966.

- [36] Scholz M, Martin R J. Control of bio-regenerated granular activated carbon by spreadsheet modelling [J]. *Journal of Chemical Technology and Biotechnology*, 1998, 71(3): 253-261.
- [37] Jiang J G, Shen Y F. Development of the microbial communities in Lake Donghu in relation to water quality [J]. *Environmental Monitoring and Assessment*, 2007, **127**(1): 227-236.
- [38] Montresor L C, Miranda-Filho K C, Paglia A, et al. Short-term toxicity of ammonia, sodium Hydroxide and a commercial biocide to golden mussel Limnoperna fortunei (Dunker, 1857) [J]. Ecotoxicology and Environmental Safety, 2013, 92: 150-154.
- [39] Hecky R, Kilham P. Nutrient limitation of phytoplankton in freshwater and marine environments: a review of recent evidence on the effects of enrichment [J]. *Limnology and Oceanography*, 1988, **33**(4): 796-822.
- [40] Bode A, Dortch Q. Uptake and regeneration of inorganic nitrogen in coastal waters influenced by the Mississippi River spatial and seasonal variations [J]. *Journal of Plankton Research*, 1996, **18**(12): 2251-2268.
- [41] Lohrenz S E, Fahnenstiel G L, Redalje D G, et al. Variations in primary production of northern Gulf of Mexico

continental shelf waters linked to nutrient inputs from the Mississippi River [J]. *Marine Ecology Progress Series*, 1997, **155**: 45-54.

- [42] Yin K, Harrison P J, Beamish R J. Effects of a fluctuation in Fraser River discharge of primary production in the central strait of Georgia, British Columbia, Canada [J]. Canadian Journal of Fisheries and Aquatic Sciences, 1997, 54(5): 1015-1024.
- [43] Yin K, Goldblatt R H, Harrison P J, et al. Importance of wind and river discharge in influencing nutrient dynamics and phytoplankton production in summer in the central Strait of Georgia [J]. Marine Ecology Progress Series, 1997, 161: 173-183.
- [44] Tian C, Tan J, Wu X, et al. Spatiotemporal transition of bacterioplankton diversity in a large shallow hypertrophic freshwater lake, as determined by denaturing gradient gel electrophoresis [J]. Journal of Plankton Research, 2009, 31(8): 885-897.
- [45] Yang J P. Primary assessment on water quality along the coast of Qingdao by protistan community in BPFU system [D]. Qingdao: Ocean University of China, 2009. [杨 金鹏. 利用BPFU系统中原生生物群落对青岛近岸水质 状况的初步评价 [D]. 青岛: 中国海洋大学, 2009.]

MOLECULAR DIVERSITIES OF PLANKOTIC MICROBIAL EUKARYOTES IN THE PEARL RIVER AND THEIR RELATIONSHIP WITH WATER ENVIRONMENT

ZHU Chang-Yu, LU Kai-Hui and YI Zhen-Zhen

(Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Science, South China Normal University, Guangzhou 510631, China)

Abstract: To analyze the molecular diversity of planktonic microbial eukaryotes as well as relationships between the community structures and physicochemical factors based on the terminal restriction fragment length polymorphism (T-RFLP), water samples were collected from 43 sites in Guangzhou Reach of Pearl River and Guangdong Reach of Xijiang River during wet season and dry season, respectively. The results revealed that water bodies of Guangzhou Reach of Pearl River and Guangdong Reach of Xijiang River were in poor quality. The diversity indexes of planktonic microbial eukaryotes in Guangdong Reach of Xijiang River were higher than those in Guangzhou Reach of Pearl River. The Shannon-Wiener indexes of samples collected in wet season were lower than those in dry season. There were significant differences in community structures of microbial eukaryotes from different seasons and regions. The community structures of planktonic microbial eukaryotes in Pearl River were affected by chemical oxygen demand, permanganate index, ammonia nitrogen, total nitrogen and total phosphorus. However, correlation coefficients between community structures and physicochemical factors were different depending on seasons and regions. In addition, one T-RF and six T-RFs were selected as possible sensitive species (*Cystobasidium* sp. or *Protostelium nocturnum*) and pollution-tolerant species (*Acanthamoeba hatchetti, Babesia bicornis, Blastocystis* sp., *Botryosphaerella sudetica, Candida caryicola, Coccomyxa simplex, Cryptomonas ovata, Filos agilis, Stenophora robusta, Sulfonecta uniserialis* and *Theileria* sp. etc.), respectively.

Key words: The Pearl River; Microbial eukaryote; 18S rDNA; T-RFLP; Molecular diversity

样品名Sample name	经度Longitude	纬度Latitude	样本描述Sample description	地点描述Location description
GC1	113°47′37.211″	23°45′8.2548″	广州参照点1	流溪河国家森林公园
GC2	113°5′27.650″	23°9′2.988″	广州参照点2	思贤窖
GC3	112°53′8.001″	23°9'39.5604''	广州参照点3	三水区东平水道
GC4	113°20'45.229"	23°4′56.1755″	广州参照点4	海珠湿地公园
GC5	113°17′44.88″	22°53′35.6855″	广州参照点5	顺德水道
GC6	113°37′26.4936″	23°6'44.5932''	广州参照点6	刘屋洲水道
GC7	113°11′46.7088″	23°26′20.0543″	广州参照点7	秀全水库
GG1	113°13′23.4875″	23°12′1.7748″	广州工业点1	石门水厂工业区
GG2	113°13′55.9344″	23°9′51.6455″	广州工业点2	松北工业区
GG3	113°18′13.2228″	23°3′45.2556″	广州工业点3	南华西工业区
GJ1	113°14′42.0972″	23°6′31.6691″	广州交通点1	芳村码头
GJ2	113°18′22.4604″	23°6'35.3339''	广州交通点2	中大码头
GJ3	113°26′17.1095″	23°5′59.8524″	广州交通点3	嘉利码头
GN1	113°18′58.5503″	23°5′2.85″	广州农田点1	上冲果树公园
GN2	113°28'4.1016"	23°7′9.966″	广州农田点2	大沙北
GN3	113°29'8.7756″	22°53′23.838″	广州农田点3	东涌
GR1	113°37'48.2051"	22°45′34.9128″	广州入海口1	南沙天后宫
GR2	113°29′30.4224″	23°3′55.134″	广州入海口2	黄埔大桥
GR3	113°40′18.1272″	22°38′29.1623″	广州入海口3	新龙特大桥
GS1	113°13′52.1508″	23°7'42.4739''	广州生活点1	珠岛花园
GS2	113°15′28.0835″	23°5′48.5411″	广州生活点2	太古仓
GS3	113°20'13.4484''	23°7'4.5552''	广州生活点3	猎德涌
XG1	112°48′9.0108″	23°5'34.0475''	西江工业点1	肇庆市高要区
XG2	112°56′33.0539″	22°55′15.6792″	西江工业点2	佛山市高明区
XG3	112°55′54.0156″	22°44′4.4592″	西江工业点3	江门市鹤山市
XG4	113°7'31.5372"	22°33'17.0352"	西江工业点4	江门市江海区
XG5	113°30′21.0923″	22°16'44.4575"	西江工业点5	中山市坦洲镇
XJ1	112°48′17.7551″	23°5′58.2792″	西江交通点1	肇庆市高要区
XJ2	112°54′26.3556″	22°54′0.864″	西江交通点2	佛山市高明区
XJ3	113°1′57.5436″	22°48′23.2271″	西江交通点3	江门市鹤山市
XJ4	113°11′6.8459″	22°35′9.3227″	西江交通点4	江门市江海区
XJ5	113°25′28.9488″	22°13′8.1012″	西江交通点5	中山市坦洲镇
XN1	112°47′54.4019″	23°5′24.6911″	西江农田点1	肇庆市高要区
XN2	112°51′48.8592″	22°57′21.5136″	西江农田点2	佛山市高明区
XN3	113°4′52.176″	22°41′48.8112″	西江农田点3	江门市鹤山市
XN4	113°5′25.1592″	22°32′52.908″	西江农田点4	江门市江海区
XN5	113°24′40.5684″	22°13′34.6008″	西江农田点5	中山市坦洲镇
XR1	113°25′14.4587″	22°12′55.5731″	西江入海口	中山市坦洲镇
XS1	112°47′47.5008″	23°5′22.1316″	西江生活点1	肇庆市高要区
XS2	112°54′22.7664″	22°54′5.4756″	西江生活点2	佛山市高明区
XS3	112°57′38.0952″	22°46′33.6″	西江生活点3	江门市鹤山市
XS4	113°5′27.6504″	22°32′26.9843″	西江生活点4	江门市江海区
XS5	113°31′16.4387″	22°16′25.4568″	西江生洁点5	中山帀坦洲镇

附表 1 采样点信息 Appendix Tab. 1 Information of sampling sites

样本 Sample	温度Temp (℃)	pН	盐度Salinity (‰)	溶氧量DO (mg/L)	化学需氧量 COD _{Cr} (mg/L)	高锰酸盐指数 COD _{Mn} (mg/L)	氨氮AN (mg/L)	总氮TN (mg/L)	总磷TP (mg/L)	水质类别The rank of water quality
GC1_1	27.4	7.82	0.088	8.2	8	1.46	0.12	0.2	0.037	I、II类
GC2_1	26.2	6.87	0.13	7.9	5	1.03	0.24	1.4	0.046	IV类
GC3_1	26.7	6.97	0.134	7.7	7	1.31	0.28	1.3	0.062	IV类
GC4_1	33	8.75	0.196	7.8	8	1.25	0.11	0.5	0.02	I、Ⅱ类
GG1_1	27.9	7.07	0.232	1.2	70	15	9.9	12.2	0.435	劣Ⅴ类
GG2_1	27.8	7.13	0.265	0.2	101	30.9	18.5	20.4	0.705	劣Ⅴ类
GG3_1	31.1	7.44	0.191	5.4	23	8.46	3.4	5.1	0.186	劣Ⅴ类
GJ1_1	28.5	7.07	0.17	2.7	18	5.08	2.36	3.5	0.104	劣Ⅴ类
GJ2_1	30.5	7.06	0.167	3	8	3.3	2.6	3.6	0.092	劣Ⅴ类
GJ3_1	29.9	7.02	0.177	3.6	7	2.58	2.7	5.6	0.106	劣Ⅴ类
GN1_1	29.9	7	0.265	0.1	17	7.92	19.8	23.8	0.745	劣Ⅴ类
GN2_1	29.4	6.64	0.292	4.4	23	5.32	5.6	7.4	0.178	劣Ⅴ类
GN3_1	32	7.1	0.208	3.6	12	4.58	1.76	3.6	0.104	劣Ⅴ类
GR1_1	28.8	7.29	0.171	4.9	3.5	1.68	0.56	2.1	0.076	劣Ⅴ类
GR2_1	30.3	7.04	0.092	2.7	14	1.7	0.56	1.8	0.064	V类
GR3_1	32.9	8	0.207	7	16	1.92	0.6	2	0.044	V类
GS1_1	30.7	6.95	0.177	0.7	18	6.2	3.1	4.2	0.116	劣Ⅴ类
GS2_1	28.9	7.19	0.147	4.1	5	2.66	1.3	1.6	0.064	V类
GS3_1	30	6.3	0.189	0.9	11	6.18	2	5.3	0.114	劣Ⅴ类
XG1_1	29.1	6.88	0.31	3.1	38	9.68	2.7	8	0.272	劣Ⅴ类
XG2_1	31.6	7.45	0.283	5.6	18	6.34	4.7	6.8	0.22	劣Ⅴ类
XG3_1	28	7.22	0.173	3.2	42	19.4	4	8.2	0.256	劣Ⅴ类
XG4_1	26.1	7.01	0.174	6.5	10	2.8	0.2	1.6	0.269	V类
XG5_1	27.6	6.93	0.031	1.8	25	10.44	8.7	10	0.49	劣Ⅴ类
XJ1_1	26.9	7.6	0.206	7.6	4	1.3	0.21	3.6	0.086	劣Ⅴ类
XJ2_1	29.4	7.54	0.146	6.6	4.5	2.06	0.49	1.2	0.027	IV类
XJ3_1	27.3	7.51	0.155	6.8	2.8	1.38	0.5	0.6	0.037	Ⅲ类
XJ4_1	25.6	7.28	0.16	7.4	3.3	1.42	0.87	1.7	0.042	V类
XJ5_1	27	7.03	0.152	6.5	16	2.31	0.48	1.1	0.042	IV类
XN1_1	29.5	6.87	0.418	2.8	32	9.16	3.5	8.6	0.342	劣Ⅴ类
XN2_1	30	4.4	0.175	6.88	14	4.08	1.02	3.2	0.082	劣Ⅴ类
XN3_1	27.6	6.02	0.191	7.7	12	1.76	0.4	0.8	0.056	III类
XN4_1	26.8	7.42	0.172	5.6	2	1.5	1.3	2.7	0.061	劣Ⅴ类
XN5_1	29.4	6.94	0.252	6.6	14	2.93	0.52	1.4	0.09	IV类
XR1_1	26.5	6.7	0.151	6.5	12	3.26	0.42	1.4	0.078	IV类
XS1_1	28.9	6.81	0.473	3.2	25	8.72	2.2	8	0.304	劣Ⅴ类
XS2_1	29.2	7.52	0.144	6.5	10.6	2.42	0.61	1.4	0.035	IV类
XS3_1	29.8	7.04	0.219	2.8	36	8.06	7	9.6	0.262	劣Ⅴ类
XS4_1	26.2	7.56	0.163	6.7	9	1.66	0.1	0.8	0.03	Ⅲ类
XS5_1	29.6	7.13	0.217	0.1	150	52.2	33.5	37	0.95	劣Ⅴ类
GC1_2	20.8	7.23	0.083	7.6	3	1.04	0.06	2.3	0.055	劣Ⅴ类
$GC2_2$	18.8	7.71	0.155	8.4	8	2.06	0.32	2.2	0.104	劣Ⅴ类
GC3_2	18.6	7.69	0.152	8.1	5	1.52	0.43	2.4	0.098	劣Ⅴ类
$GC4_2$	19.1	8.31	0.214	9.8	3	1.74	0.01	0.5	0.055	I、Ⅱ类
GC5_2	20.2	7.31	0.31	6.1	11.5	4.68	1.62	3.1	0.137	劣Ⅴ类

附表 2 理化因子数据 Appendix Tab. 2 Physicochemical factors

续附表	2
-----	---

样本 浩 Sample	温度Temp (℃)	pН	盐度Salinity (‰)	溶氧量DO (mg/L)	化学需氧量 COD _{Cr} (mg/L)	高锰酸盐指数 COD _{Mn} (mg/L)	氨氮AN (mg/L)	总氮TN (mg/L)	总磷TP (mg/L)	水质类别The Rank of water quality
GC6_2	19.3	7.64	0.154	8.2	4.3	1.93	0.5	2.9	0.131	劣V类
GC7_2	19.9	7.03	0.128	6.8	5	1.96	0.3	1.8	0.091	V类
GG1_2	18.3	7.26	0.333	1.3	17.7	4.64	10.2	11.7	0.822	劣V类
GG2_2	18.2	7.32	0.253	0.2	19.8	8.22	5.4	11.4	0.744	劣V类
GG3_2	22.5	7.2	0.282	0.4	22	8.85	9.8	11.1	0.901	劣V类
GJ1_2	19.4	7.07	0.28	1.9	17	6.32	5.5	8	0.32	劣V类
GJ2_2	19.7	7.09	0.25	2.3	12.2	4.51	3.2	7.3	0.251	劣V类
GJ3_2	18.3	7.03	0.384	3.2	22.2	4.69	2.16	8.4	0.17	劣V类
GN1_2	17.2	7.4	0.293	5.8	27.1	5.92	6.9	10.2	0.483	劣V类
GN2_2	18.3	7.31	0.3	5.2	30	4.02	5.1	7.5	0.277	劣V类
GN3_2	17.9	7.44	0.924	6.7	2.2	1.89	0.52	4.4	0.117	劣V类
GR1_2	18.9	7.71	10.52	8.8	18.9	3.01	0.1	2.5	0.088	劣V类
GR2_2	19.7	6.99	0.883	2.7	12.5	3.66	0.36	5.4	0.144	劣V类
GR3_2	19.8	7.76	6.081	8.2	7.1	2.05	0.34	1.8	0.114	V类
GS1_2	19.3	7.05	0.267	2.7	9	6.12	5.4	8	0.339	劣V类
GS2_2	20.5	6.99	0.276	0.8	8	5.8	5.3	7.2	0.326	劣V类
GS3_2	19.4	7.06	0.313	3.4	31.8	4.2	7.76	13.5	0.617	劣V类
XG1_2	20.8	6.77	0.636	4.6	47	8.6	6.5	10	1.778	劣V类
XG2_2	21.4	7.08	0.291	1.5	22	6.52	4	7.1	0.972	劣V类
XG3_2	24.7	7.26	0.429	4.8	44	6.2	6.8	16.3	0.966	劣V类
XG4_2	20.4	7.49	0.188	6.5	12	4.97	0.8	3.1	0.307	劣V类
XG5_2	21.8	7.18	0.392	2.2	36	5.36	7.7	8.4	0.643	劣V类
XJ1_2	20.1	7.52	0.156	7.7	6	1.74	0.3	0.5	0.121	III类
XJ2_2	20.7	7.59	0.159	7.6	6	1.92	0.15	1.3	0.101	IV类
XJ3_2	21.3	7.38	0.214	6.3	32	2.28	3.6	4.6	0.392	劣V类
XJ4_2	20.4	7.7	0.16	7.9	8	1.48	0.15	1	0.098	III类
XJ5_2	21.2	7.66	0.798	7.6	11	2.5	0.3	0.6	0.131	III类
XN1_2	21.1	6.96	0.471	3.1	49	11.55	6.5	10.5	1.599	劣V类
XN2_2	21.2	7.02	0.13	5.3	16	4.14	0.39	2.7	0.101	劣V类
XN3_2	20.7	7.69	0.164	8.6	19	1.2	0.59	2.3	0.196	劣V类
XN4_2	20.8	7.39	0.178	6.3	6	1.72	0.49	3.8	0.16	劣V类
XN5_2	22.4	7.88	0.393	8.8	14	2.43	0.2	1.1	0.101	IV类
XR1_2	21.1	7.63	0.344	7.3	9	1.96	0.2	0.8	0.124	III类
XS1_2	21	6.79	0.491	2.2	39.5	11.08	4.8	11.4	1.566	劣V类
XS2_2	21.6	7.53	0.184	6.7	12	2.74	2.9	6	0.261	劣V类
XS3_2	24.2	6.81	0.423	0.6	100	13.44	8.7	10.9	2.023	劣V类
XS4_2	20.6	7.48	0.172	6.4	12	1.59	0.41	2.5	0.147	劣V类
XS5_2	24.5	7.18	0.487	0.2	248	58.4	44.4	50.1	31.979	劣V类

7/1 + a	井子 600 子月长去神阳周期 月月 合版代表词
附表3	基于MICA上具的木端限制性后段对应物种预测

Appendix rab. 5 Species prediction based on terminal restriction magnetics and where tool	Appendix Tab. 3	Species prediction based o	n terminal restriction fragments and MICA tool
---	-----------------	----------------------------	--

片段长度The length of T-RF	GenBank登录号Accession number	物种分类Taxonomy
76	AB055190	Opisthokonta, Fungi, Dikarya, Basidiomycota, Pucciniomycotina, Cystobasidiomycetes, Cystobasidiales, Cystobasidiaceae, <i>Cystobasidium</i> , <i>Cystobasidium</i> sp.
76	FJ766481	Amoebozoa, Mycetozoa, Protosteliales, Protosteliaceae, Protostelium, Protostelium nocturnum
83	DQ504334	Alveolata, environmental samples
83	FJ648512	Archaeplastida, Viridiplantae, Chlorophyta, Trebouxiophyceae, Trebouxiophyceae incertae sedis,
83	EU446335	environmental samples
83	AB023471	Opisthokonta, Fungi, Dikarya, Ascomycota, Saccharomycotina, Saccharomycetes, Saccharomycetales, Saccharomycetales incertae sedis. <i>Candida, Candida, agrestis</i>
83	AB013503	Disthokonta, Fungi, Dikarya, Ascomycota, Saccharomycotina, Saccharomycetes, Saccharomycetales, Saccharomycetales incertaesedis. <i>Candida melibiosica</i>
83	AY242231	Opisthokonta, Fungi, Dikarya, Ascomycota, Saccharomycotina, Saccharomycetes, Saccharomycetales, Saccharomycetales incertaesedis, <i>Candida, Candida</i> , sp.
83	AB013514	Opisthokonta, Fungi, Dikarya, Ascomycota, Saccharomycotina, Saccharomycetes, Saccharomycetales, Metschnikowiaceae, <i>Clavispora, Clavispora/Candida</i> clade
83	AY640202	Opisthokonta, Fungi, Dikarya, Ascomycota, Saccharomycotina, Saccharomycetes, Saccharomycetales, Metschnikowiaceae, <i>Clavispora, Clavispora/Candida</i> clade
83	DQ655699	Opisthokonta, Fungi, Dikarya, Ascomycota, Saccharomycotina, Saccharomycetes, Saccharomycetales, Metschnikowiaceae, <i>Clavispora, Clavispora/Candida</i> clade
83	AB013571	Opisthokonta, Fungi, Dikarya, Ascomycota, Saccharomycotina, Saccharomycetes, Saccharomycetales, Metschnikowiaceae, <i>Clavispora, Clavispora/Candida</i> clade
83	EF152415	Opisthokonta, Fungi, Dikarya, Ascomycota, Saccharomycotina, Saccharomycetes, Saccharomycetales, Metschnikowiaceae, <i>Clavispora, Clavispora/Candida</i> clade
83	EF152412	Opisthokonta, Fungi, Dikarya, Ascomycota, Saccharomycotina, Saccharomycetes, Saccharomycetales, Metschnikowiaceae, <i>Clavispora, Clavispora/Candida</i> clade
83	EF408189	Saccharomycetales, Metschnikowiaceae, <i>Clavispora</i> , <i>Clavispora</i> / <i>Candida</i> clade
83	X89518	Opistnokonta, Fungi, Dikarya, Ascomycota, Saccharomycotna, Saccharomycetes, Saccharomycetales, Metschnikowiaceae, <i>Clavispora</i> , <i>Clavispora/Candida</i> clade
83	AB013545	Saccharomycetales, Metschnikowiaceae, <i>Clavispora</i> , <i>Clavispora/Candida</i> clade
83	AB013547	Saccharomycetales, Metschnikowiaceae, <i>Clavispora, Clavispora/Candida</i> clade Onisthokonta, Fungi Dikarya, Ascomycota, Saccharomycotina, Saccharomycetes
83	AY611608	Saccharomycetales, Metschnikowiaceae, <i>Candida, Candida</i> sp. Onisthokonta Fungi Dikarya Ascomycota Saccharomycotina Saccharomycetes
83	AY520164	Saccharomycetales, Metschnikowiaceae, <i>Metschnikowia, Metschnikowia chrysomelidarum</i> Opisthokonta, Fungi, Dikarya, Ascomycota, Saccharomycotina, Saccharomycetes
83	AY452053	Saccharomycetales, Metschnikowiaceae, <i>Metschnikowia, Metschnikowia picachoensis</i> Opisthokonta, Fungi, Dikarya, Ascomycota, Saccharomycotina, Saccharomycetes,
83	AY452055	Saccharomycetales, Metschnikowiaceae, <i>Metschnikowia, Metschnikowia pimensis</i> Opisthokonta, Fungi, Dikarya, Ascomycota, Saccharomycotina, Saccharomycetes,
83	AJ508272	Saccharomycetales, Metschnikowiaceae, <i>Metschnikowia, Metschnikowia rancensis</i> Archaeplastida, Viridiplantae, Chlorophyta, Chlorophyceae, Chlamydomonadales,
117	U57695	Chlamydomonadaceae, Chlamydomonas, Chlamydomonas mutabilis
117	U57696	Archaeplastida, Viridiplantae, Chlorophyta, Chlorophyceae, Chlamydomonadales, Chlamydomonadaceae, <i>Chlamydomonas, Chlamydomonas nivalis</i>
117	DQ009749	Archaeplastida, Viridiplantae, Chlorophyta, Chlorophyceae, Chlamydomonadales, Chlamydomonadaceae, <i>Microglena, Microglena reginae</i>
117	AF517100	Archaeplastida, Viridiplantae, Chlorophyta, Chlorophyceae, Chlamydomonadales, Chlamydomonadaceae, <i>Chlamydomonas</i> , unclassified <i>Chlamydomonas</i>
117	AJ410445	Archaepiastida, Viridiplantae, Chloropinyta, Chloropinyteae, Chlamydomonadales, Chlamydomonadaceae, Chloromonas, Chloromonas actinochloris
117	U70783	Archaepiastida, Vindiplantae, Chloromonas, Chloromonas asteroidea
117	AF517095	Chlamydomonadaceae, <i>Chloromonas</i> , <i>Chloromonas augustae</i> Archaelastida, Viridinlantae, <i>Chloromonas</i> , <i>Chloromonas augustae</i>
117	AF517092	Chlamydomonadaceae, <i>Chloromonas</i> , Chloromonas brevispina Archaeplastida, Viridinlantae, Chloromonyta, Chloromonas brevispina
117	GU117585	Chlamydomonadaceae, <i>Chloromonas</i> , Chloromonas insignis Archaenlastida, Viridinlantae, Chloromhyta, Chloronhyceae, Chlamydomonadales
117	AF514402	Chlamydomonadaceae, Chloromonas, Chloromonas rostafinskii Archaenlastida, Viridinlantae, Chloromhyta, Chloronhyceae, Chlamydomonadales
117	AF514401	Chlamydomonadaceae, <i>Chloromonas</i> , Chloromonas cf. platystigma Archaeplastida, Viridinlantae, Chloromohyta, Chlorombuega, Chlamydomonadales
117	GU117584	Chlamvdomonadaceae. Chloromonas. Chloromonas cf. schussnieii

片段长度The (GenBank登录号Accession	物种分类Taxonomy
length of T-RF	number	
117	AB504776	Archaeplastida, Viridiplantae, Chlorophyta, Chlorophyceae, Chlamydomonadales, Chlamydomonadaceae, <i>Chloromonas, Chloromonas insignis</i>
117	AF517091	Archaeplastida, Viridiplantae, Chlorophyta, Chlorophyceae, Chlamydomonadales, Chlamydomonadaceae, Chloromonas, Chloromonas reticulata
117	AF517089	Archaeplastida, Viridiplantae, Chlorophyta, Chlorophyceae, Chlamydomonadales, Chlamydomonadaceae, <i>Chloromonas, Chloromonas paraserbinowii</i>
117	AF517087	Archaeplastida, Viridiplantae, Chlorophyta, Chlorophyceae, Chlamydomonadales, Chlamydomonadaceae, Chloromonas, Chloromonas pichinchae
117	AJ410451	Archaeplastida, Viridiplantae, Chlorophyta, Chlorophyceae, Chlamydomonadales, Chlamydomonadaceae, <i>Chloromonas, Chloromonas reticulata</i>
117	AJ410448	Archaeplastida, Viridiplantae, Chlorophyta, Chlorophyceae, Chlamydomonadales, Chlamydomonadaceae, Chloromonas, Chloromonas reticulata
117	AJ410450	Archaeplastida, Viridiplantae, Chlorophyta, Chlorophyceae, Chlamydomonadales, Chlamydomonadaceae. Chloromonas, Chloromonas reticulata
117	AJ410449	Archaeplastida, Viridiplantae, Chlorophyta, Chlorophyceae, Chlamydomonadales, Chlamydomonadaceae, Chloromonas, Chloromonas reticulata
117	AJ410447	Archaeplastida, Viridiplantae, Chlorophyta, Chlorophyceae, Chlamydomonadales, Chlamydomonadaceae, <i>Chloromonas, Chloromonas reticulata</i>
117	GU117583	Archaeplastida, Viridiplantae, Chlorophyta, Chlorophyceae, Chlamydomonadales, Chlamydomonadaceae, <i>Chloromonas, Chloromonas, reticulata</i>
117	U70791	Archaeplastida, Viridiplantae, Chlorophyta, Chlorophyceae, Chlamydomonadales, Chlamydomonadaceae, Chloromonas, Chlorophyta, Chlorophyceae, Chlamydomonadaceae, Chlorophyta, Ch
117	AF517090	Archaeplastida, Viridiplantae, Chlorophyta, Chlorophyceae, Chlamydomonadales, Chlamydomonadaceae, Chloromonas, Chlorophyta, Colorophyceae, Chlamydomonadales,
117	AF517094	Archaeplastida, Viridiplantae, Chlorophyta, Chlorophyceae, Chlamydomonadales,
117	AF517093	Archaeplastida, Viridiplantae, Chlorophyta, Chlorophyceae, Chlamydomonadales, Chlamydomonadaceae, Chlorophyta, Chlorophyceae, asychrophila
117	AF514400	Archaeplastida, Viridiplantae, Chlorophyta, Chlorophyceae, Chlamydomonadales, Chlamydomonadaceae. <i>Chloromonas, Chlorophyta, rostafinskii</i>
117	AF517086	Archaeplastida, Viridiplantae, Chlorophyta, Chlorophyceae, Chlamydomonadales, Chlamydomonadaceae, Chloromonas, Chloromonas, sp.
117	AF517085	Archaeplastida, Viridiplantae, Chlorophyta, Chlorophyceae, Chlamydomonadales, Chlamydomonadaceae, <i>Chloromonas, Chloromonas variabilis</i>
117	AF113506	Archaeplastida, Viridiplantae, Streptophyta, Coleochaetophyceae, Coleochaetales, Chaetosphaeridiaceae, <i>Chaetosphaeridium, Chaetosphaeridium globosum</i>
117	AJ250110	Archaeplastida, Viridiplantae, Streptophyta, Coleochaetophyceae, Coleochaetales, Chaetosphaeridiaceae, Chaetosphaeridium, Chaetosphaeridium globosum
117	AF181094	Archaeplastida, Viridiplantae, Streptophyta, Coleochaetophyceae, Coleochaetales, Chaetosphaeridiaceae, Chaetosphaeridium, Chaetosphaeridium ovalis
117	AF032723	Archaeplastida, Viridiplantae, Streptophyta, Charophyceae, Charales, Characeae, Chara, Chara andina
117	AF032724	Archaeplastida, Viridiplantae, Streptophyta, Charophyceae, Charales, Characeae, Chara, Chara andina
117	AF032725	Archaeplastida, Viridiplantae, Streptophyta, Charophyceae, Charales, Characeae, Chara, Chara aspera
117	AJ581914	Archaeplastida, Viridiplantae, Chlorophyta, Chlorophyceae, Sphaeropleales, Neochloridaceae, <i>Botryosphaerella, Botryosphaerella sudetica</i>
117	FJ971856	Stramenopiles, Bicosoecida, Filos, Filos agilis
192	AF251939	Amoebozoa, Discosea, Longamoebia, Centramoebida, Acanthamoebidae, Acanthamoeba, Acanthamoeba hatchetti
192	AY488125	Opisthokonta, Fungi, Dikarya, Ascomycota, Saccharomycotina, Saccharomycetes, Saccharomycetales, <i>Candida, Candida caryicola</i>
235	AJ566178	Cryptophyceae, Cryptophyta, Cryptomonadales, Cryptomonadaceae, Cryptomonas, Cryptomonas ovata
376	AB330056	environmental samples, uncultured eukaryote
376	EU050966	environmental samples, uncultured eukaryote
377	U97108	Alveolata, Ciliophora, Intramacronucleata, Armophorea, Armophorida, Caenomorphidae, Sulfonecta, Sulfonecta uniserialis
377	FJ459760	Alveolata, Apicomplexa, Conoidasida, Gregarinasina, Eugregarinorida, Stenophoricae, Stenophora, Stenophora robusta
377	FJ668369	Alveolata, Apicomplexa, Aconoidasida, Piroplasmida, Theileriidae, Theileria, Theileria sp.
391	AF419313	Alveolata, Apicomplexa, Aconoidasida, Piroplasmida, Babesiidae, Babesia, Babesia bicornis
391	DQ060422	Alveolata, Apicomplexa, Conoidasida, Coccidia, Eucoccidiorida, Eimeriorina, Cryptosporidiidae, <i>Cryptosporidium, Cryptosporidium andersoni</i>
391	AB210854	Alveolata, Apicomplexa, Conoidasida, Coccidia, Eucoccidiorida, Eimeriorina, Cryptosporidiidae, Cryptosporidium Cryptosporidium canis

片段长度The G length of T-RF	enBank登录号Accessior number	物种分类Taxonomy
391	AF112576	Alveolata, Apicomplexa, Conoidasida, Coccidia, Eucoccidiorida, Eimeriorina, Cryptosporidiidae, <i>Cryptosporidium, Cryptosporidium canis</i>
391	EF527180	environmental samples
391	AB013502	Opisthokonta, Fungi, Dikarya, Ascomycota, Saccharomycotina, Saccharomycetes, Saccharomycetales, <i>Diutina, Diutina rugosa</i>
391	EF371020	Opisthokonta, Fungi, Dikarya, Ascomycota, Saccharomycotina, Saccharomycetes, Saccharomycetales, <i>Diutina, Diutina rugosa</i>
391	GU144663	Opisthokonta, Fungi, Dikarya, Ascomycota, Saccharomycotina, Saccharomycetes, Saccharomycetales, Diutina, Diutina rugosa
406	DQ868348	Alveolata, Ciliophora, Intramacronucleata, Oligohymenophorea, Peritrichia, Sessilida, Vorticellidae, Vorticella, Vorticella convallaria
406	DQ190468	Alveolata, Ciliophora, Intramacronucleata, Oligohymenophorea, Peritrichia, Sessilida, Vorticellidae. Vorticella Vorticella fusca
406	DQ487201	Alveolata, Ciliophora, Intramacronucleata, Oligohymenophorea, Peritrichia, Sessilida, Vorticellidae, Vorticella, Vorticella sp.
406	DQ868349	Alveolata, Ciliophora, Intramacronucleata, Oligohymenophorea, Peritrichia, Sessilida, Vorticellidae, Vorticella, Vorticella sp.
406	DQ868353	Alveolata, Ciliophora, Intramacronucleata, Oligohymenophorea, Peritrichia, Sessilida, Zoothamniidae, <i>Zoothamnium</i> , <i>Zoothamnium</i> sp.
406	AB013559	Opisthokonta, Fungi, Dikarya, Ascomycota, Saccharomycotina, Saccharomycetes, Saccharomycetales, Saccharomycetales incertae sedis, <i>Starmerella, Starmerella apicola</i>
406	AB091237	Stramenopiles, Blastocystis, Blastocystis hominis
406	AF408425	Stramenopiles, Blastocystis, Blastocystis hominis
406	AF408426	Stramenopiles, Blastocystis, Blastocystis hominis
406	EF209018	Stramenopiles, Blastocystis, Blastocystis sp.
406	AY919721	environmental samples, uncultured freshwater eukaryote
406	DQ103870	environmental samples, uncultured marine eukaryote
406	DQ103851	environmental samples, uncultured marine eukaryote
406	EF526727	environmental samples, uncultured marine eukaryote
406	DQ310260	environmental samples, uncultured marine eukaryote
406	DQ310329	environmental samples, uncultured marine eukaryote
406	EF526796	environmental samples, uncultured marine eukaryote
406	EF526717	environmental samples, uncultured marine eukaryote
406	EF527191	environmental samples, uncultured marine eukaryote
406	EF526811	environmental samples, uncultured marine eukaryote
406	EF526835	environmental samples, uncultured marine eukaryote
406	EF527104	environmental samples, uncultured marine eukaryote
406	EF526761	environmental samples, uncultured marine eukaryote
406	EF526987	environmental samples, uncultured marine eukaryote
406	EF527059	environmental samples, uncultured marine eukaryote
406	EF526994	environmental samples, uncultured marine eukaryote
406	EF526754	environmental samples, uncultured marine eukaryote
406	EU371181	environmental samples, uncultured marine eukaryote
406	EU446330	environmental samples, uncultured marine eukaryote
406	GU246582	environmental samples, uncultured marine eukaryote
406	GU246579	environmental samples, uncultured marine eukaryote

续附表3