初始硝酸钠浓度对魏氏真眼点藻的生长、形态和油脂积累的影响

何思思, 高保燕, 雷学青, 万凌琳, 李爱芬, 张成武

何思思, 高保燕, 雷学青, 万凌琳, 李爱芬, 张成武. 初始硝酸钠浓度对魏氏真眼点藻的生长、形态和油脂积累的影响[J]. 水生生物学报, 2015, 39(3): 574-582. DOI: 10.7541/2015.75
引用本文: 何思思, 高保燕, 雷学青, 万凌琳, 李爱芬, 张成武. 初始硝酸钠浓度对魏氏真眼点藻的生长、形态和油脂积累的影响[J]. 水生生物学报, 2015, 39(3): 574-582. DOI: 10.7541/2015.75
HE Si-Si, GAO Bao-Yan, LEI Xue-Qing, WAN Ling-Lin, LI Ai-Fen, ZHANG Cheng-Wu. EFFECTS OF INITIAL NITROGEN SUPPLY ON THE GROWTH, MORPHOLOGY AND LIPID ACCUMULATION OF OLEAGINOUS MICROALGA EUSTIGMATOS VISCHERI (EUSTIGMATOPHYCEAE)[J]. ACTA HYDROBIOLOGICA SINICA, 2015, 39(3): 574-582. DOI: 10.7541/2015.75
Citation: HE Si-Si, GAO Bao-Yan, LEI Xue-Qing, WAN Ling-Lin, LI Ai-Fen, ZHANG Cheng-Wu. EFFECTS OF INITIAL NITROGEN SUPPLY ON THE GROWTH, MORPHOLOGY AND LIPID ACCUMULATION OF OLEAGINOUS MICROALGA EUSTIGMATOS VISCHERI (EUSTIGMATOPHYCEAE)[J]. ACTA HYDROBIOLOGICA SINICA, 2015, 39(3): 574-582. DOI: 10.7541/2015.75

初始硝酸钠浓度对魏氏真眼点藻的生长、形态和油脂积累的影响

基金项目: 

国家863主题项目(2013AA065805)

自然科学基金(31170337)

广东省低碳专项(2011-051)、珠海市科技重大项目(PB20041018)

珠海市科技攻关项目(PC20081008)资助

EFFECTS OF INITIAL NITROGEN SUPPLY ON THE GROWTH, MORPHOLOGY AND LIPID ACCUMULATION OF OLEAGINOUS MICROALGA EUSTIGMATOS VISCHERI (EUSTIGMATOPHYCEAE)

  • 摘要: 为了确定不同初始氮供应水平对产油微藻魏氏真眼点藻(Eustigmatos vischeri)生长、形态和油脂积累的影响, 本研究通过在改良的BG-11培养基中设置4种不同的初始硝酸钠浓度(17.6、11.7、5.9和3.0 mmol/L)对魏氏真眼点藻(E. vischeri)进行培养。观察结果表明, 魏氏真眼点藻(E. vischeri)的营养细胞为一具裂叶状叶绿体、细胞质中有一红色素体和许多振动颗粒及光滑细胞壁的球形单细胞; 细胞繁殖方式主要是形成二分裂和四分裂的似亲孢子。在低氮条件下, 随着培养时间的延长, 细胞内油体逐步形成, 至培养末期占据细胞的大部分空间, 同时培养物的颜色也由绿色向黄绿色转变, 最终呈橙黄色。实验结果表明, 魏氏真眼点藻(E. vischeri)生物质浓度在17.6 mmol/L组获得最大值为9.14 g/L; 总脂、中性脂和总脂肪酸三者占干重的含量随着初始硝酸钠浓度的降低而升高, 在3.0 mmol/L组获得最高值, 分别为60.81%、56.59%和53.47%; 三者的单位体积产率均在5.9 mmol/L组获得最高值, 分别为0.24、0.21和0.20 g/(Ld); 主要脂肪酸组成为棕榈酸(C16:0)、棕榈油酸(C16:1)、油酸(C18:1)和二十碳五烯酸(C20:53, EPA), 其中棕榈油酸的含量最高。上述研究表明, 魏氏真眼点藻(E. vischeri)是一株适合于生产生物柴油和长链不饱和脂肪酸EPA的高产油微藻。
    Abstract: This research aimed at analysing the effects of initial nitrogen supply on the growth, morphology and lipids accumulation of an oleaginous microalga of Eustigmatophyceae, Eustigmatos vischeri. E. vischeri was grown in modified BG-11 medium containing four different initial concentrations of sodium nitrate (17.6 mmol/L, 11.7 mmol/L, 5.9 mmol/L and 3.0 mmol/L). The cell morphology and oil droplets formation process of E. vischeri were observed under microscope. It was found that the vegetative cells of E. vischeri were spherical unicellular with smooth cell wall and containing a lobed chloroplast, a red pigment body and many vibrating ganules in cytoplasm. The main reproduction way is by forming autospore such as binary or quadripartition division. With the prolongation of cultivation time, the oil droplets formed gradually under nitrogen depletion. Then, the oil droplets became larger and mutual fusion into larger and larger oil bodies, eventually occupied the main part of the cell. Moreover, the color of cultures changed from green to yellow-green, finally to orange-yellow. The physiological results showed that the highest biomass concentration was occurred at the initial sodium nitrate concentration of 17.6 mmol/L, up to 9.14 g/L. The contents of total lipid (TLs), neutral lipids (NLs) and total fatty acids (TFAs) increased following the reduction of nitrogen concentration. Their maximum contents reached to 60.81%, 56.59% and 53.47% at the basis of dry cell weight, respectively. However, the highest volumetric productivity of TLs, NLs and TFAs were up to 0.24, 0.21 and 0.20 g/(Ld) at 5.9 mmol/L of sodium nitrate, respectively. In addition, the main components of fatty acid were palmic acid, palmitoleic acid, oleic acid and eicosapentaenoic acid, among them, the content of palmitoleic acid was highest one. As a whole, E. vischeri was an oleaginous microalga, suitable for the production of biodiesel and high value-adding of long-chain polyunsaturated fatty acid EPA.
  • [1]

    Rodolfi L, Chini Zittelli G, Bassi N, et al. Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor [J]. Biotechnology and Bioengineering, 2009, 102(1): 100112

    [2]

    Ren M, Ogden K. Cultivation of Nannochloropsis gaditana on mixtures of nitrogen sources [J]. Environmental Progress and Sustainable Energy, 2014, 33(2): 551555

    [3]

    Chisti Y. Biodiesel from microalgae [J]. Biotechnology Advances, 2007, 25(3): 294306

    [4]

    Hu Q, Sommerfeld M, Jarvis E, et al. Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances [J]. The Plant Journal, 2008, 54(4): 621639

    [5]

    Adams C, Godfrey V, Wahlen B, et al. Understanding precision nitrogen stress to optimize the growth and lipid content tradeoff in oleaginous green microalgae [J]. Bioresource Technology, 2013, 131: 188194

    [6]

    Liu Z Y, Wang G C, Zhou B C. Effect of iron on growth and lipid accumulation in Chlorella vulgaris [J]. Bioresource Technology, 2008, 99(11): 47174722

    [7]

    Yeh K L, Chang J S. Effects of cultivation conditions and media composition on cell growth and lipid productivity of indigenous microalga Chlorella vulgaris ESP-31 [J]. Bioresource Technology, 2012, 105: 120127

    [8]

    Damiani M C, Popovich C A, Constenla D, et al. Triacylglycerol content, productivity and fatty acid profile in Scenedesmus acutus PVUW12 [J]. Journal of Applied Phycology, 2014, 26(3): 14231430

    [9]

    Takagi M, Karseno, Yoshida T. Effect of salt concentration on intracellular accumulation of lipids and triacylglyceride in marine microalgae Dunaliella cells [J]. Journal of Bioscience and Bioengineering, 2006, 101(3): 223226

    [10]

    Simionato D, Block M A, La Rocca N, et al. The response of Nannochloropsis gaditana to nitrogen starvation includes de novo biosynthesis of triacylglycerols, a decrease of chloroplast galactolipids, and reorganization of the photosynthetic apparatus [J]. Eukaryotic Cell, 2013, 12(5): 665676

    [11]

    Bigogno C, Khozin-Goldberg I, Boussiba S, et al. Lipid and fatty acid composition of the green oleaginous alga Parietochloris incisa, the richest plant source of arachidonic acid [J]. Phytochemistry, 2002, 60(5): 497503

    [12]

    Li Y, Horsman M, Wang B, et al. Effects of nitrogen sources on cell growth and lipid accumulation of green alga Neochloris oleoabundans [J]. Applied Microbiology Biotechnology, 2008, 81(4): 629636

    [13]

    Metzger P, Largeau C. Botryococcus braunii: a rich source for hydrocarbons and related ether lipids [J]. Applied Microbiology and Biotechnology, 2005, 66(5): 486496

    [14]

    Wang B, Lan C Q. Biomass production and nitrogen and phosphorus removal by the green alga Neochloris oleoabundans in simulated wastewater and secondary municipal wastewater effluent [J]. Bioresource Technology, 2011, 102(10): 56395644

    [15]

    Khozin-Goldberg I, Cohen Z. The effect of phosphate starvation on the lipid and fatty acid composition of the fresh water eustigmatophyte Monodus subterraneus [J]. Phytochemistry, 2006, 67(7): 696701

    [16]

    Breuer G, Lamers P P, Martens D E, et al. Effect of light intensity, pH, and temperature on triacylglycerol (TAG) accumulation induced by nitrogen starvation in Scenedesmus obliquus [J]. Bioresource Technology, 2013, 143: 19

    [17]

    Juneja A, Ceballos R M, Murthy G S. Effects of environmental factors and nutrient availability on the biochemical composition of algae for biofuels production: a review [J]. Energies, 2013, 6(9): 46074638

    [18]

    Zhang H, Zhang G Y, Wen X B, et al. Effects of pH on the photosynthesis , growth and lipid production of Chlorella sp. XQ-200419 [J]. Acta Hydrobiologica Sinica, 2014, 38(6): 10841091 [张虎, 张桂艳, 温小斌, 等. pH对小球藻Chlorella sp. XQ-200419光合作用、生长和产油的影响. 水生生物学报, 2014, 38(6):10841091]

    [19]

    Gong Y, Guo X, Wan X, et al. Triacylglycerol accumulation and change in fatty acid content of four marine oleaginous microalgae under nutrient limitation and at different culture ages [J]. Journal of Basic Microbiology, 2013, 53(1): 2936

    [20]

    Prochzkov G, Brnyikov I, Zachleder V, et al. Effect of nutrient supply status on biomass composition of eukaryotic green microalgae [J]. Applied Phycology, 2014, 26(3): 13591377

    [21]

    Khozin-Goldberg I, Shrestha P, Cohen Z. Mobilization of arachidonyl moieties from triacylglycerols into chloroplastic lipids following recovery from nitrogen starvation of the microalga Parietochloris incisa [J]. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids, 2005, 1738(1): 6371

    [22]

    Alonzo F, Mayzaud P. Spectrofluorometric quantification of neutral and polar lipids in zooplankton using Nile red [J]. Marine Chemistry, 1999, 67(3): 289301

    [23]

    Zhang J J, L X J, Zhang C W, et al. Rapid estimation of lipids in microalgae cells [J]. China Biotechnology, 2012, 32(1): 6472 [张敬键, 吕雪娟, 张成武, 等. 微藻细胞油脂含量的快速检测方法研究. 中国生物工程杂志, 2012, 32(1): 6472]

    [24]

    Hibberd D J, Leedale G F. Eustigmatophyceae-a new algal class with unique organization of the motile cell [J]. Nature, 1970, 225(5234): 758760

    [25]

    Gao B Y, Zhang C W, Wan L L, et al. Systematics, biological characteristic and potential application of Eustigmatophyceae [J]. Acta Hydrobiologica Sinica, 2014, 38(5): 945956 [高保燕, 张成武, 万凌琳, 等. 真眼点藻纲的系统分类、生物学特性及应用研究. 水生生物学报, 2014, 38(5): 945956]

    [26]

    Wang Y L, Li Q Y, Li A F, et al. Growth and photosynthetic physiological characteristics of four Eustigmatophycean species [J]. Biotechnology, 2014, 24(2): 9195 [王元丽, 李其雨, 李爱芬, 等. 4株真眼点藻的生长及光合生理特性. 生物技术, 2014, 24(2): 9195]

    [27]

    Li Z, Sun M, Li Q, et al. Profiling of carotenoids in six microalgae (Eustigmatophyceae) and assessment of their -carotene productions in bubble column photobioreactor [J]. Biotechnology Letts, 2012, 34(11): 20492053

    [28]

    Li Q Y, Li A F, Zhang C W. The method of extraction and determination of pigment in Eustigmatophyceae [J]. Ecological Science, 2012, 31(3): 278283 [李其雨, 李爱芬, 张成武. 真眼点藻类色素的提取与测定方法. 生态科学, 2012, 31(3): 278283]

    [29]

    Han J. The analysis of main biochemical composition and determination of the enzymes involved in the chrysolaminarin metabolizing of Eustigmatos cf. polyphem [D]. Jinan University, 2013 [韩娟. 类波氏真眼点藻的主要生化组成分析及其金藻昆布糖代谢相关酶的活性测定. 暨南大学, 2013]

    [30]

    Griffiths M J, van Hille R P, Harrison S T L. Lipid productivity, settling potential and fatty acid profile of 11 microalgal species grown under nitrogen replete and limited conditions [J]. Journal of Applied Phycology, 2012, 24(5): 9891001

    [31]

    Rodolfi L, Chini Zittelli G, Bassi N, et al. Microalgae for oil: Strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor [J]. Biotechnology and Bioengineering, 2009, 102(1): 100112

  • 期刊类型引用(12)

    1. 潘孝妍,陈长鸿,王秀海,曹猛,刘平怀. 不同营养条件对微藻Ankistrodesmus sp.CJ09生长和油脂积累的影响. 中国油脂. 2020(03): 135-139 . 百度学术
    2. 李涛,赵伟,杨冰洁,陈子硕,吴华莲,吴后波,向文洲. 一株耐盐真眼点藻(Eustigmatos sp.)的户外培养及油脂提取工艺研究. 生物技术通报. 2020(07): 130-138 . 百度学术
    3. 印尤强,黄罗冬,胡强,张成武. 光径及氮浓度对缺刻缘绿藻生长、油脂和花生四烯酸积累的影响. 水生生物学报. 2019(03): 654-663 . 本站查看
    4. 赵伟,李涛,吴华莲,陈浩,刘德海,向文洲,吴后波. 不同氮源及氮浓度对耐高盐真眼点藻生长、脂类积累及脂肪酸组成的影响. 生物技术通报. 2019(06): 62-68 . 百度学术
    5. 赵秀侠,杨坤,方婷,李静,卢文轩. 3种微藻在龟鳖养殖废水中的生长与脱氮除磷特性. 水资源保护. 2018(01): 83-87+94 . 百度学术
    6. 陈爱玲,高保燕,黄罗冬,王飞飞,张成武. 营养盐初始组合浓度对类波氏真眼点藻生长和油脂积累的影响. 植物科学学报. 2018(03): 420-430 . 百度学术
    7. 车绕琼,赵鹏,徐军伟,李涛,余旭亚. 黄腐酸对单针藻生长和油脂含量的影响. 水生生物学报. 2017(02): 437-442 . 本站查看
    8. 苏怡,高保燕,黄罗冬,吴曼曼,李爱芬,张成武. 不同氮源及氮浓度对真眼点藻纲微藻生长及油脂积累的影响. 水生生物学报. 2017(03): 677-691 . 本站查看
    9. 王倩雅,罗舒怀,张莹,李爱芬,张成武. 不同初始氮浓度下尖状栅藻同化硝态氮和CO_2的研究. 植物科学学报. 2017(04): 583-591 . 百度学术
    10. 梁晶晶,蒋霞敏,江茂旺,张泽凌,韩庆喜. 固定化微绿球藻去除NH_4~+-N、PO_4~(3-)-P效果的研究. 水生生物学报. 2016(05): 1033-1040 . 本站查看
    11. 吴桂秀,黄罗冬,高保燕,李爱芬,张成武. 不同氮源及其浓度对标志链带藻合成淀粉和油脂的影响. 微生物学报. 2016(07): 1168-1177 . 百度学术
    12. 何思思,高保燕,黄罗冬,李爱芬,张成武. 不同培养模式下魏氏真眼点藻生长和产油特性的研究. 植物科学学报. 2016(02): 289-298 . 百度学术

    其他类型引用(8)

计量
  • 文章访问数:  2607
  • HTML全文浏览量:  1
  • PDF下载量:  627
  • 被引次数: 20
出版历程
  • 收稿日期:  2014-08-24
  • 修回日期:  2015-01-11
  • 发布日期:  2015-05-24

目录

    /

    返回文章
    返回