微囊藻生长及光合系统Ⅱ对重金属镉的响应

冉小飞, 刘瑞, 白芳, 施军琼, 吴忠兴

冉小飞, 刘瑞, 白芳, 施军琼, 吴忠兴. 微囊藻生长及光合系统Ⅱ对重金属镉的响应[J]. 水生生物学报, 2015, 39(3): 627-632. DOI: 10.7541/2015.83
引用本文: 冉小飞, 刘瑞, 白芳, 施军琼, 吴忠兴. 微囊藻生长及光合系统Ⅱ对重金属镉的响应[J]. 水生生物学报, 2015, 39(3): 627-632. DOI: 10.7541/2015.83
RAN Xiao-fei, LIU Rui, BAI Fang, SHI Jun-qiong, WU Zhong-xing. THE RESPONSE ON THE GROWTH AND PHOTOSYSTEM II OF MICROCYSTIS AERUGINOSA TO CADMIUM, A HEAVY METAL[J]. ACTA HYDROBIOLOGICA SINICA, 2015, 39(3): 627-632. DOI: 10.7541/2015.83
Citation: RAN Xiao-fei, LIU Rui, BAI Fang, SHI Jun-qiong, WU Zhong-xing. THE RESPONSE ON THE GROWTH AND PHOTOSYSTEM II OF MICROCYSTIS AERUGINOSA TO CADMIUM, A HEAVY METAL[J]. ACTA HYDROBIOLOGICA SINICA, 2015, 39(3): 627-632. DOI: 10.7541/2015.83

微囊藻生长及光合系统Ⅱ对重金属镉的响应

基金项目: 

西南大学博士基金(SWU110065)

国家自然科学基金(31170372)资助

THE RESPONSE ON THE GROWTH AND PHOTOSYSTEM II OF MICROCYSTIS AERUGINOSA TO CADMIUM, A HEAVY METAL

  • [1]

    Beyer J, Jonsson G, Porte C, et al. Analytical methods for determining metabolites of polycyclic aromatic hydrocarbon (PAH) pollutants in fish bile [J]. Environmental Toxicology and Pharmacology, 2010, 30(3): 224244

    [2]

    Qiu C E, Kuang Q J, Bi Y H, et al. The effect of Cd2+ on the growth and physiological characteristics of Chlorococcum sp [J]. Acta Hydrobiologica Sinica, 2007, 31(1): 141145 [邱昌恩, 况琪军, 毕永红, 等. Cd2+对绿球藻生长及生理特性的影响研究. 水生生物学报, 2007, 31(1): 141145]

    [3]

    Si D F, Yang L M, Yan H, et al. Cadmium accumulation mechanism and transformation pathways of Phaeodactylum tricornutum [J]. Science China Chemistry, 2010, 40(2): 136143 [斯冬芳, 杨利民, 严华, 等. 三角褐指藻对镉的富集机制和转化途径. 中国科学: 化学, 2010, 40(2): 136143]

    [4]

    Wang S H, Zhang D Y, Pan X X. Effects of cadmium on the activities of photosystems of Chlorella pyrenoidosa and the protective role of cyclic electron flow [J]. Chemosphere, 2013, 93(2): 230237

    [5]

    Faller P, Kienzler K, Krieger-Liszkay A. Mechanism of Cd2+ toxicity: Cd2+ inhibits photoactivation of PhotosystemⅡby competitive binding to the essential Ca2+ site [J]. Biochimica et Biophysica Acta, 2005, 1706(1): 158-164

    [6]

    Pinto E, Morse D, Colepicolo P. Heavy metal-induced oxidative stress in algae [J]. Phycology, 2003, 39(6): 10081018

    [7]

    Lamai C, Kruatrachue M, Pokethitiyook P, et al. Toxicity and accumulation of lead and cadmium in the filamentous green alga Cladophora fracta (O.F. Mller ex Vahl) Ktzing: a laboratory study [J]. Science Asia, 2005, 31(2): 121127

    [8]

    Ou yang H L, Kong X Z, Lavoie M, et al. Photosynthetic and cellular toxicity of cadmium in Chlorella vulgaris [J]. Environmental Toxicology and Chemistry, 2013, 32(12): 27622770

    [9]

    Andosch A, Affenzeller M J, Ltz C, et al. A freshwater green alga under cadmium stress: Ameliorating calcium effects on ultrastructure and photosynthesis in the unicellular model Micrasterias [J]. Journal of Plant Physiology, 2012, 169(15): 14891500

    [10]

    Awad S, Chu T C. Effect of cadmium on the growth of Chlamydomonas [J]. Journal of Young Investigators, 2005, 13(3): 416420

    [11]

    Miao A, Wang W, Juneau P. Comparison of Cd, Cu and Zn toxic effects on four marine phytoplankton by pulse-amplitude-modulated fluorometry [J]. Environmental Toxicology and Chemistry, 2005, 24(10): 26032611

    [12]

    Guanzon J N G, Nakahara H, Yoshida Y. Inhibitory effects of heavy metals on growth and photosynthesis of three freshwater microalgae [J]. Fisheries Science, 1994, 60: 379384

    [13]

    Neelam A, Rai L C. Differential responses of three cyanobacteria to UV-B and Cd [J]. Journal of Microbiology Biotechnology, 2003, 13(4): 544551

    [14]

    Zhou W B, Juneau P, Qiu B S. Growth and photosynthetic responses of the bloom-forming cyanobacterium Microcystis aeruginosa to elevated levels of cadmium [J]. Chemosphere, 2006, 65(10): 17381746

    [15]

    Stirbet A. Chlorophyll a fluorescence induction: a personal perspective of the thermal phase, the J-I-P rise [J]. Photosynthesis Research, 2012, 113(13): 1561

    [16]

    Strasser R J, Srivastava A, Tsimilli-Michael M. The fluorescence transient as a tool to characterize and screen photosynthetic samples. In: Yunus M, Pathre U, Mohanty P (Eds), Probing photosynthesis: mechanisms, regulation and adaptation. London: Taylor and Francis Press. 2000, 445483

    [17]

    Ma W M, Sun L, Qian Z P, et al. Effects of three higher aquatic plants on the growth of Microcystis aeruginosa [J]. Journal of Shanghai Teachers University, 2003, 32(1): 101104 [马为民, 孙莉, 钱志萍, 等. 三种高等水生植物对铜绿微囊藻生长的影响. 上海师范大学学报, 2003, 32(1): 101104]

    [18]

    Wei F S, Bi T. Water and Wastewater Monitoring and Analysis Methods [M]. Beijing: Chinese Environmental Science Press. 2002, 670671 [魏复盛, 毕彤. 水和废水监测分析方法. 北京: 中国环境科学出版社. 2002, 670671]

    [19]

    Venkatesh J, Upadhyaya C P, Yu J W, et al. Chlorophyll a fluorescence transient analysis of transgenic potato overexpressing D-galacturonic acid reductase gene for salinity stress tolerance [J]. Horticulture, Environment, and Biotechnology, 2012, 53(4): 320328

    [20]

    Strasser B J. Donor side capacity of Photosystem II probed by chlorophyll a fluorescence transients [J]. Photosynthesis Research, 1997, 52(2): 11471155

    [21]

    Sayed O H. Chlorophyll fluorescence as a tool in cereal crop research [J]. Photosynthetica, 2003, 41(3): 321330

    [22]

    Lazar D. Chlorophyll a fluorescence induction [J]. Biochimica et Biophysica Acta, 1999, 1412(1): 128

    [23]

    Redillas M C F R, Strasser R J, Jeong J S, et al. The use of JIP test to evaluate drought-tolerance of transgenic rice over expressing OsNAC10 [J]. Plant Biotechnology Reports, 2011, 5(2): 169175

    [24]

    Strasser R J, Tsimill-Michael M, Srivastava A. Analysis of the Chlorophyll a Fluorescence Transient [M]. In: Papageorgiou G and Govindjee (Eds), Advances in Photosynthesis and Respiration. Netherlands: KAP Press. 2004, 147

    [25]

    Ni L X, Acharya K, Hao X Y, et al. Effects of artemisinin on photosystem II performance of Microcystis aeruginosa by in vivo chlorophyll fluorescence [J]. Bulletin of Environmental Contamination and Toxicology, 2012, 89(6): 11651169

    [26]

    Govindjee. Sixty-three years since Kautsky; Chlorophyll a fluorescence [J]. Australian Journal of Plant Physiology, 1995, 22: 131160

    [27]

    Antal T K, Kolacheva A, Maslakov A, et al. Study of the effect of reducing conditions on the initial chlorophyll fluorescence rise in the green microalgae Chlamydomonas reinhardtii [J]. Photosynthesis Research, 2013, 114(3): 143154

  • 期刊类型引用(11)

    1. 夏亦雪,许萍萍,阮港,涂晓杰,毕永红. 汞对雪衣藻光合系统Ⅱ及能量分配的影响. 生态毒理学报. 2023(03): 388-397 . 百度学术
    2. 何艺欣,唐炳然,张丽雪,曲今垚,李宏. 老化聚苯乙烯纳米塑料对铜绿微囊藻的影响. 中国环境科学. 2022(12): 5877-5884 . 百度学术
    3. 刘春香,李文胜,管宇航,许云飞,王计超. 高CO_2和Cd~(2+)对铜绿微囊藻叶绿素含量及荧光特性影响. 广东化工. 2021(09): 29-31 . 百度学术
    4. 葸玉琴,赖金霞,张明旭,任春燕,孔维宝,贾凌云. Cr~(3+)和Cd~(2+)对普通小球藻生长及抗氧化酶活性的影响. 微生物学报. 2021(07): 2091-2100 . 百度学术
    5. 许萍萍,涂晓杰,成凤凤,毕永红. 庆大霉素对斜生栅藻生长与光合活性的影响. 环境科学与技术. 2021(08): 146-153 . 百度学术
    6. 王仁杰,朱凡,梁惠子,黄鑫浩,王旭旭,楚晶晶. 重金属Mn对苦楝叶片光系统性能的影响. 生态学报. 2020(06): 2019-2027 . 百度学术
    7. 聂利华,杨东娟,刘亚群,韩博平,马秀兰,查广才. 一株虾池来源的螺旋拟柱孢藻藻株的分离鉴定及重金属离子Cu~(2+)、Cd~(2+)和Pb~(2+)对其生长的影响. 微生物学报. 2019(07): 1307-1317 . 百度学术
    8. 罗丽娟,唐莉娜,陈星峰,李延. 硅对镉胁迫下烟草叶片PSⅡ叶绿素荧光特性的影响. 烟草科技. 2019(08): 1-8 . 百度学术
    9. 贺新宇,刘黎,付君珂,杨燕君,米文梅,施军琼,吴忠兴. 重金属镉对拟柱孢藻(Cylindrospermopsis raciborskii)PSⅡ及能量分配特征的影响效应. 湖泊科学. 2019(06): 1612-1622 . 百度学术
    10. 葸玉琴,任春燕,朱巧巧,孔维宝,孙对兄. 普通小球藻对不同浓度镉胁迫的生理应答. 水生生物学报. 2017(05): 1106-1111 . 本站查看
    11. 蔡卓平,吴皓,刘伟杰,刁盼盼,骆育敏,段舜山. 海洋微藻响应重金属复合胁迫的生理生态学机制. 生态科学. 2017(03): 216-219 . 百度学术

    其他类型引用(9)

计量
  • 文章访问数:  2675
  • HTML全文浏览量:  0
  • PDF下载量:  639
  • 被引次数: 20
出版历程
  • 收稿日期:  2014-05-28
  • 修回日期:  2014-08-11
  • 发布日期:  2015-05-24

目录

    /

    返回文章
    返回