河流鱼类诱驱理论及其在过鱼设施中的应用

谭均军, 孙钧键, 石小涛

谭均军, 孙钧键, 石小涛. 河流鱼类诱驱理论及其在过鱼设施中的应用[J]. 水生生物学报, 2025, 49(1): 012515. DOI: 10.7541/2025.2024.0416
引用本文: 谭均军, 孙钧键, 石小涛. 河流鱼类诱驱理论及其在过鱼设施中的应用[J]. 水生生物学报, 2025, 49(1): 012515. DOI: 10.7541/2025.2024.0416
TAN Jun-Jun, SUN Jun-Jian, SHI Xiao-Tao. THEORIES OF FISH ATTRACTION AND REPULSION IN RIVERS AND THEIR APPLICATIONS IN FISH PASSAGE SYSTEMS[J]. ACTA HYDROBIOLOGICA SINICA, 2025, 49(1): 012515. DOI: 10.7541/2025.2024.0416
Citation: TAN Jun-Jun, SUN Jun-Jian, SHI Xiao-Tao. THEORIES OF FISH ATTRACTION AND REPULSION IN RIVERS AND THEIR APPLICATIONS IN FISH PASSAGE SYSTEMS[J]. ACTA HYDROBIOLOGICA SINICA, 2025, 49(1): 012515. DOI: 10.7541/2025.2024.0416
谭均军, 孙钧键, 石小涛. 河流鱼类诱驱理论及其在过鱼设施中的应用[J]. 水生生物学报, 2025, 49(1): 012515. CSTR: 32229.14.SSSWXB.2024.0416
引用本文: 谭均军, 孙钧键, 石小涛. 河流鱼类诱驱理论及其在过鱼设施中的应用[J]. 水生生物学报, 2025, 49(1): 012515. CSTR: 32229.14.SSSWXB.2024.0416
TAN Jun-Jun, SUN Jun-Jian, SHI Xiao-Tao. THEORIES OF FISH ATTRACTION AND REPULSION IN RIVERS AND THEIR APPLICATIONS IN FISH PASSAGE SYSTEMS[J]. ACTA HYDROBIOLOGICA SINICA, 2025, 49(1): 012515. CSTR: 32229.14.SSSWXB.2024.0416
Citation: TAN Jun-Jun, SUN Jun-Jian, SHI Xiao-Tao. THEORIES OF FISH ATTRACTION AND REPULSION IN RIVERS AND THEIR APPLICATIONS IN FISH PASSAGE SYSTEMS[J]. ACTA HYDROBIOLOGICA SINICA, 2025, 49(1): 012515. CSTR: 32229.14.SSSWXB.2024.0416

河流鱼类诱驱理论及其在过鱼设施中的应用

基金项目: 国家自然科学基金(52179070和52279069); 湖北省自然科学基金计划(创新群体项目)(2023AFA005)资助
详细信息
    作者简介:

    谭均军(1985—), 女, 副教授; 主要研究方向为工程影响鱼类保护。E-mail: tanjunjun52@163.com

    通信作者:

    石小涛, 男, 教授; 主要研究方向为工程影响鱼类保护。E-mail: fishlab@163.com

  • 中图分类号: S956

THEORIES OF FISH ATTRACTION AND REPULSION IN RIVERS AND THEIR APPLICATIONS IN FISH PASSAGE SYSTEMS

Funds: Supported by the National Natural Science Foundation of China (52279069 and 52179070); the Innovative Research Group Program of Natural Science Foundation of Hubei Province (2023AFA005)
    Corresponding author:
  • 摘要:

    过鱼设施作为恢复鱼类洄游通道的重要生态补偿措施, 已广泛应用于水生态保护, 然而其过鱼效果尚未达到预期。诱驱鱼技术是提升过鱼设施过鱼效果的关键手段之一。结合近十年的室内与野外实验研究, 文章系统阐述了水流、声、光、电、气泡幕及生物因子等对鱼类行为的影响机制及诱驱理论, 总结了诱驱鱼技术在过鱼设施中的应用优势与不足, 得出结论: (1)鱼类对诱驱鱼因素的行为响应研究逐渐深入, 由二维平面发展到三维空间(如由流速到流场、由声强到声场等); (2)诱驱鱼因素对不同鱼类的诱驱效果呈现种属共性和特异性, 且不同大小鱼类对诱驱鱼因素也存在行为响应差异; (3)诱驱鱼技术研究对象逐渐由海洋鱼类转向淡水经济鱼类和保护鱼种, 研究方法趋向于考虑多因子交互作用对鱼类行为的影响; (4)诱驱鱼技术的效果受多种因素交互影响, 包括物种差异、工程布置适应性、运行管理等。未来研究应进一步解析多因子交互作用下的鱼类行为响应机制, 优化适应不同过鱼设施运行条件的诱驱鱼设计, 推动水生态保护的发展。

    Abstract:

    Fish passage facilities, as an important ecological compensation measure for restoring fish migratory routes, have been widely implemented in aquatic ecosystem conservation. However, their effectiveness in facilitating fish passage remains below expectations. Fish attraction and repulsion technologies play a critical role in enhancing fish passage performance. This paper systematically elucidates the mechanisms and guidance theories of water flow, sound, light, electricity, bubble curtains, and biological factors on fish behavior, based on nearly a decade of indoor and field experiments. The paper also summarizes the advantages and limitations of these technologies in fish passage applications. Key conclusions include: (1) Research on fish behavioral responses to attraction and repulsion factors has evolved from two-dimensional to three-dimensional perspectives (e.g., from flow velocity to flow fields, from sound intensity to sound fields); (2) The effectiveness of attraction and repulsion factors shows both commonalities and species-specific differences among fish, with varying behavioral responses across different fish sizes; (3) Research focus has shifted from marine species to freshwater economic and protected species, with increasing attention to the interactive effects of multiple factors on fish behavior; And (4) the performance of attraction and repulsion technologies is influenced by multiple interacting factors, including species-specific characteristics, engineering design adaptability, and operational management. Future research should further explore fish behavioral responses under multi-factor interactions, optimize attraction and repulsion designs for various operational conditions of fish passage facilities, and advance aquatic ecosystem conservation.

  • 拒马河原名涞水河, 是海河流域大清河北部支流, 发源于河北省涞源县西北太行山麓, 流经紫荆关向北至涞水县折向东流, 至北京市张坊镇分为南、北二支, 南拒马河目前已经干涸消亡, 北拒马河于白沟镇流入大清河, 拒马河干流长254 km, 张坊镇以上流域面积5115 km2, 是中国北方最大的冬季不结冰河流[14]。拒马河流域地貌复杂, 不同河段气候与环境相差悬殊, 生境的多样性造就了丰富的水生生物资源, 是华北地区内陆水域生物多样性的重要组成部分, 具有极高的科研及保护价值[5, 6]

    河流及湖泊水文环境的改变影响其中鱼类群落的结构组成, 而鱼类群落的结构组成也是水生生态系统健康的重要指标, 可通过鱼类群落的变动来分析水环境状况的受污染程度[7, 8]。近年来, 拒马河生态环境发生了巨大变化, 生态流量逐年下降, 水生态环境受人类影响较大[5], 水质、水文流通性发生改变, 改变了生活在其中的鱼类的栖息环境, 增加了鱼类的生存压力[9]。拒马河拦河坝的建设导致河流片段化严重, 纵向连通几乎丧失, 鱼类洄游通道被阻断, 部分河段形成小型静水湖泊, 洄游性、亲流性和因拦河坝建设而失去栖息及越冬场所的鱼类减少而喜静水性鱼类增加[10, 11]。加深鱼类群落在空间和时间上对生境改变做出反应的认知对制定有效的生态环境保护策略非常重要[12], 国内关于鱼类群落与环境因子的关系的研究多集中于近海和河口, 对于内陆河流的研究较为匮乏[1315]。目前, 拒马河鱼类资源的调查虽有不少资料, 但了解得仍然不够深入和系统, 多仅限于北京段, 如2008年杨文波等[16]对拒马河北京段的鱼类资源调查, 记录鱼类24种; 张春光等[17]在《北京及其邻近地区的鱼类》中整理历史资料, 记录拒马河历史上出现鱼类42种; 袁立来等[6]利用鱼类生物完整性指数对拒马河北京段进行了河流健康评价, 发现拒马河北京段河流健康整体处于较差水平。对拒马河上游区域的物种组成和地理分布等基本问题仍缺乏准确的数据, 因此, 系统开展拒马河鱼类资源调查, 以掌握拒马河鱼类时空分布及影响因子, 是拒马河鱼类资源开发利用和资源保护首要解决的问题。

    本研究基于2019—2021年间6次拒马河鱼类资源调查数据, 从物种组成、优势种及群落结构特征等方面分析了鱼类群落结构现状, 并讨论了鱼类资源的时空分布与环境因子的关系, 为拒马河流域内的鱼类资源的保护、修复和管理提供理论基础和科学依据。

    本次调查范围自涞源县拒马河源头至张坊镇龙安大桥, 采样点的选择参考《内陆水域渔业自然资源调查规范》[18], 综合考虑拒马河河流特点及采样点的代表性, 设置了15个采样点, 采样点的经纬度和位置见表 1图 1。于2019年5月 (春季)、8月 (夏季)、10月 (秋季), 2020年8月、10月和2021年5月进行采样调查, 每个采样点设置两条多目刺网和地笼, 刺网规格20 m×1 m和25 m×1.5 m, 网目为3和5 cm, 地笼规格为10 m×35 cm×30 cm和10 m×25 cm×20 cm, 网目为1 cm。刺网和地笼于16:00—18:00时下网, 次日5:00—7:00起网, 放置时间约12h。依据最新鱼类学专著对采集的渔获物分类[1921], 对新鲜鱼类样本现场进行物种鉴定和个体测量, 采用游标卡尺和电子天平测量体长(精确到1 mm)和体重(精确到0.1 g)数据, 现场无法鉴定的个体用95%的酒精保存后带回实验室进一步分类鉴定。

    表  1  拒马河采样点分布
    Table  1.  Distribution of sampling stations in the Juma River
    采样点
    Sampling station
    编号
    Serial number
    经度
    Longitude
    纬度
    Latitude
    拒马河源头
    The source of Juma River
    S1114°45′04.115″39°19′57.115″
    刁江汇
    Diaojianghui
    S2115°01′36.775″39°25′39.702″
    紫荆关大桥
    Zijingguan Bridge
    S3115°10′03.338″39°25′41.776″
    清凉涧
    Qingliangjian
    S4115°15′38.952″39°37′44.969″
    小丰口桥
    Xiaofengkou Bridge
    S5115°20′35.686″39°42′05.548″
    别岸
    Bie’an
    S6115°27′38.115″39°39′06.187″
    琅琊河
    Langya River
    S7115°29′18.773″39°39′08.849″
    天花板
    Tianhuaban
    S8115°30′40.557″39°39′47.696″
    北石门
    Beishimen
    S9115°32′44.611″39°38′33.555″
    西河口
    Xihekou
    S10115°34′09.356″39°38′27.367″
    九渡JiuduS11115°35′22.049″39°37′41.080″
    六渡LiuduS12115°37′59.485″39°38′19.132″
    穆家口
    Mujiakou
    S13115°39′48.970″39°37′43.089″
    千河口
    Qianhekou
    S14115°39′57.071″39°36′38.520″
    龙安大桥
    Longan Bridge
    S15115°41′14.921″39°34′32.855″
    下载: 导出CSV 
    | 显示表格
    图  1  拒马河采样点示意图
    Figure  1.  Map showing the sampling stations in the Juma River

    对鱼类资源调查的同时, 对15个采样点进行海拔(ASL)、水温(Tem)、水深(Dep)、溶解氧(DO)、透明度(SD)、浊度(FNU)、pH和叶绿素a(Chl.a)等环境因子的测定(水科院, 未发表数据)。

    采用以下多样性指数来分析拒马河鱼类群落多样性: (1)Margalef丰富度指数(DMa)[22]: DMa =(S–1)/ln N; (2)Shannon-Wiener多样性指数(H') [23]: H′= –∑Pi× ln Pi; (3)Pielou均匀度指数(J′) [24]: J′=H′/lnS。式中, S为采集到的鱼类种类数, N为采集到鱼类的个体数, Pi为样品中第i种鱼类的个体数占渔获物中全部个体数的比例。选择Pinkas等[25]提出的相对重要指数(Index of relative importance, IRI)计算拒马河鱼类群落优势种: IRI=(Ni+Wi) Fi。式中, Ni为渔获物中第i种鱼类的个体数占渔获物总个体数的百分比, Wi为第i种鱼类的生物量占渔获物总生物量的百分比, Fi为第i种鱼类在采样点出现的频率。定义IRI≥500的为优势种, 100≤IRI<500的为重要种, 10≤IRI<100的为常见种, 1≤IRI<10的为一般种, IRI<1的为稀有种[26]

    采用丰度生物量比较曲线(Abundance-biomass comparison curves, ABC曲线) [27]判断鱼类群落稳定性及受干扰程度, ABC曲线的统计量用W表示, 当生物量优势度曲线位于丰度优势度曲线之上时, W为正, 表明群落结构稳定未受干扰, 反之W为负[28]: W=∑(Bi–Ai)/50(S–1)。式中, Ai为第i种鱼类相对应的丰度累积百分比, Bi为第i种鱼类相对应的生物量累积百分比, S为物种数。

    为满足数据的正态齐性和方差齐性, 分析前对鱼类丰度数据及多样性数据进行lg(x+1)对数转换, 运用SPSS 25.0通过单因素方差分析(One-way ANOVE)检验不同季节、海拔鱼类丰度及多样性的差异。若存在显著性差异, 进一步使用SNK(Student-newman-Keuls)多重比较分析不同季节、海拔间鱼类丰度及多样性的变化[33]

    在Primer 5.0软件中, 以采集到的鱼类丰度数据为原始矩阵, 进行lg(x+1)对数转换, 运用等级聚类分析(Cluster)和非参数多变量排序(NMDS)将鱼类群落划分不同的组分。运用相似性百分比分析(Similarity percentages, SIMPER)确定维持不同组分间结构相似性的关键物种[29]

    利用Canoco 5.0软件对15个采样点的鱼类物种组成和环境因子进行去趋势对应分析(Detrended correspondence analysis, DCA), 根据分析结果中各排序轴的大小选择线性模型(Redundancy analysis, RDA)或单峰模型(Canonical correspondence analysis, CCA)分析鱼类物种和环境因子的相关性[30]。如果排序轴大于4选择CCA分析, 排序轴小于3选择RDA分析, 介于3和4之间, 两种分析方法均可。

    2019—2021年在拒马河共采集鱼类5486尾, 隶属5目11科37种 (表 2)。渔获物中鲤形目占绝对优势, 有3科24种, 占总种数的64.86%; 鲈形目3科6种, 占16.22%; 鲇形目2科4种, 占10.81%; 合鳃鱼目2科2种, 占5.41%; 颌针鱼目1科1种, 占2.70%。

    表  2  拒马河鱼类组成、各月份相对重要指数(IRI)及生态类型
    Table  2.  The fish composition, index of relative important (IRI) of each month and ecological types in the Juma River
    物种Species相对重要指数IRI生态类型
    2019.52019.82019.102020.82020.102021.5Ecological types
    鲤形目Cypriniformes
    鲤科Cyprinidae
    鲤亚科Cyprininae
    Carassius auratus209.633024.43371.531050.27245.62273.74S, Omn, De, V
    鱊亚科Acheilognathinae
    兴凯鱊Acheilognathus chankaensis8.36S, Omn, U,Sp
    中华鳑鲏Rhodeus sinensis8.083.87S, Omn, U, Sp
    高体鳑鲏Rhodeus ocellatus39.02148.4362.344.60S, Omn, U, Sp
    雅罗鱼亚科Leuciscinae
    尖头鱥Rhynchocypris oxycephalus668.20216.15101.76476.6144.5990.97R, Omn, Lo, Dr
    拉氏鱥Rhynchocypris lagowskii317.4510.61450.3654.01215.97108.09R, Omn, Lo, Dr
    襁亚科Danioninae
    宽鳍鱲Zacco platypus1928.30494.22282.762497.271558.08413.94R, Omn, U, D
    马口鱼Opsariichthys bidens5.484.5314.86235.48R, Car, U, D
    亚科Gobioninae
    麦穗鱼Pseudorasbora parva2291.933463.521546.542742.932605.655382.96S, Omn, De, V
    点纹银Squalidus wolterstorffi1162.26121.9224.6892.901.4922.05S, Omn, Lo, Dr
    中间银Squalidus intermedius53.1534.37R, Omn, Lo, Dr
    兴隆山小鳔Microphysogobio hsinglungshanensis217.7953.6929.3112.42369.75R, Omn, Lo, Dr
    黑鳍鳈Sarcochilichthys nigripinnis548.01622.04198.44685.56383.17884.47S, Omn, Lo, Sp
    棒花Gobio rivuloides1.47183.587.15R, Omn, De, V
    棒花鱼Abbottina rivularis263.7238.68385.70275.44532.21R, Omn, De, V
    蛇Saurogobio dabryi0.821.8326.1340.43337.4346.09R, Omn, Lo, Dr
    花鳅科Cobitidae
    泥鳅Misgurnus anguillicaudatus1044.35580.9155.3741.3416.1450.20S, Omn, De, Dr
    北方泥鳅Misgurnus bipartitus1.77R, Omn, De, Dr
    大鳞副泥鳅Paramisgurnus dabryanus109.14144.8519.2053.7821.1812.62S, Omn, De, Dr
    花斑花鳅Cobitis melanoleuca95.38115.5712.071.7271.63S, Omn, De, Dr
    条鳅科Nemacheilidae
    北鳅Lefua costata2.281.41R, Omn, De, Dr
    赛丽高原鳅Triplophysa sellaefer11.335.83104.9337.93R, Omn, De, Dr
    尖头高原鳅TriplophysaCuneicephala2.16R, Omn, De, Dr
    达里湖高原鳅Triplophysa dalaica97.0112.1180.15168.26127.34R, Omn, De, Dr
    合鳃鱼目Symbranchiformes
    刺鳅科Mastacembelidae
    刺鳅Sinobdella sinensis50.1226.0959.922.85S, Car, De, D
    合鳃鱼科Symbranchidae
    黄鳝Monopterus albus12.24S, Car, De, Dr
    鲈形目Percoidei
    鰕虎鱼科Gobiidae
    子陵吻鰕虎鱼Rhinogobius giurinus2.658.254.5653.9138.205.10R, Car, De, D
    林氏吻鰕虎鱼Rhinogobius lindbergi68.0819.589.970.0126.13R, Car, De, D
    波氏吻鰕虎鱼Rhinogobius cliffordpopei44.630.961.701.31R, Car, De, D
    福岛吻鰕虎鱼Rhinogobius fukushimai30.470.630.431.832.40R, Car, De, D
    沙塘鳢科Odontobuidae
    小黄䱂鱼Micropercops swinhonis1250.14308.40786.30453.05386.69663.59S, Omn, De, D
    丝足鲈科Osphronemidae
    圆尾斗鱼Macropodus chinensis1.400.440.981.422.62S, Car, Lo, Dr
    鲇形目Siluriformes
    鲿科Bagridae
    黄颡鱼Pelteobagrus fulvidraco313.28861.57449.501265.35191.1410.27S, Car, De, D
    瓦氏黄颡鱼Pelteobagrus vachellii7.9237.050.589.54R, Car, De, D
    乌苏里黄颡鱼Pelteobagrus ussuriensis287.0337.5920.41R, Car, De, D
    鲇科Siluridae
    Silurus asotus10.83203.88198.8926.22S, Car, De, V
    颌针鱼目Beloniformes
    青鳉科Adrianichthyidae
    青鳉Oryzias sinensis1.13S, Omn, U, V
    注: S. 喜缓流或静水; R. 亲流性; Car. 肉食性; Omn. 杂食性; U. 中上层; Lo. 中下层; De. 底栖。V. 黏性卵; D. 沉性卵; Dr. 漂流性卵; Sp. 喜贝类性卵Note: S. slow flow; R. riffle; Car. carnivore; Omn. omnivore; U. upper; Lo. lower; De. demersal; V. viscid egg; D. demersal egg; Dr. drifting egg; Sp. spawning in shellfish
    下载: 导出CSV 
    | 显示表格

    鱼类生态类型(表 2): 按生活习性可以将采集到的鱼类划分为亲流性鱼类(R)和喜缓流或静水性鱼类(S), 其中亲流性鱼类有20种, 占采集到的鱼类总种数的54.05%, 喜缓流或静水性鱼类有17种, 占总种数的45.95%; 按食性可以划分为杂食性鱼类(Omn)和肉食性鱼类(Car), 杂食性鱼类有25种, 占总种数的67.57%, 肉食性鱼类有12种, 占总种数的32.43%; 按不同栖息水层划分, 底栖鱼类(De)有23种, 占62.16%, 中下层鱼类(Lo)有8种, 占21.62%, 中上层鱼类(Up)有6种, 占16.22%; 按产卵类型划分, 产漂流性卵的鱼类(Dr)有16种, 占43.24%, 产沉性卵的鱼类(D)有11种, 占29.73%, 产黏性卵的鱼类(V)6种, 占16.22%, 喜贝类性产卵的鱼类(Sp)4种, 占10.81%。

    以相对重要指数IRI≥500的为优势种, 在6次采样调查中, 拒马河优势种有10种, 重要种有12种, 主要种有8种, 一般种有7种。各月份优势种存在差异, 2019年5月优势种为尖头鱥Rhynchocypris oxycephalus Sauvage、宽鳍鱲Zacco platypus Temminck & Schlegel、麦穗鱼Pseudorasbora parva Temminck & Schlegel、点纹银Squalidus wolterstorffi Regan、黑鳍鳈Sarcochilichthys nigripinnis Günther泥鳅Misgurnus anguillicaudatus Cantor、小黄䱂鱼Micropercops swinhonis Günther; 2019年8月优势种为鲫Carassius auratus Linnaeus、麦穗鱼、黑鳍鳈、泥鳅、黄颡鱼Tachysurus fulvidraco Richardson; 2019年10月优势种为麦穗鱼、小黄䱂鱼; 2020年8月优势种为鲫、宽鳍鱲、麦穗鱼、黑鳍鳈、黄颡鱼; 2020年10月优势种为宽鳍鱲、麦穗鱼、棒花鱼Abbottina rivularis Basilewsky; 2021年5月优势种为麦穗鱼、黑鳍鳈、小黄䱂鱼。麦穗鱼在6次采样调查中均作为优势种出现。

    单因素方差分析显示(表 3), 不同季节间个体数(N)、物种数(S)、Shannon-Wiener多样性指数(H')、Margalef丰富度指数(DMa)呈现显著性差异(P<0.05), Pielou均匀度指数(J')无显著性差异(P>0.05)。SNK多重比较分析显示, 物种数、个体数均以2019年5月最多, 15个采样点平均捕获鱼类91.00尾9.67种, 2021年10月最少, 平均38.73尾5.07种; Shannon-Wiener多样性指数(H')、Margalef丰富度指数(DMa)均以2019年8月份最高, 分别是1.76(1.09—2.20)和2.06(1.12—2.98)。2019—2021年调查显示拒马河夏季的Shannon-Wiener多样性指数(H')、Margalef丰富度指数(DMa)和Pielou均匀度指数(J')均值高于春、秋两季(图 2)。

    表  3  基于单因素方差分析检验(F值)拒马河鱼类多样性指数不同季节、不同海拔的变化
    Table  3.  Changes of fish diversity index in different seasons and different altitudes in the Juma River based on One-way ANOVA test (F value)
    项目Item个体数
    Number of
    individuals (N)
    物种数
    Number of
    species (S)
    多样性指数
    Shannon-Wiener
    diversity (H')
    均匀度指数
    Pielou
    evenness (J')
    丰富度指数
    Margalef
    richness (Dma)
    季节Season2.935*7.986**6.504**1.022ns4.9**
    海拔Altitude12.206**0.122ns1.616ns7.368ns3.765ns
    注: ns、*和**分别代表P>0.05、P<0.05、和P<0.01Note: ns, * and ** represent P>0.05, P<0.05 and P<0.01
    下载: 导出CSV 
    | 显示表格
    图  2  拒马河鱼类多样性指数在不同季节、不同海拔差异
    Figure  2.  Differences of fish diversity index in different seasons and different altitudes in the Juma River

    物种数(S)、Shannon-Wiener多样性指数(H')、Margalef丰富度指数(DMa)、Pielou均匀度指数(J')在不同海拔无显著性差异(P>0.05), 只有个体数(N)呈现显著性差异(P<0.05), 海拔高于500 m的位点平均可采集鱼类143.91尾, 海拔低于500 m的位点可采集48.19尾(图 2)。

    NMDS排序分析和聚类分析结果一致, 拒马河鱼类群落自上游至下游可划分为3组, 即S1和S2为组Ⅰ, S3和S4为组Ⅱ, 其余采样点为组Ⅲ(图 3)。相似性百分比分析SIMPER(表 4)显示, 组Ⅰ平均相似度为51.01%, 主要贡献种有麦穗鱼、鲫、小黄䱂鱼、泥鳅、拉氏鱥Rhynchocypris lagowskii Dybowski、赛丽高原鳅Triplophysa sellaefer Nichols、尖头鱥、达里湖高原鳅Triplophysa dalaica Kessler和林氏吻鰕虎鱼Rhinogobius lindbergi Berg, 累积贡献度为90.07%; 组Ⅱ平均相似度为66.92%, 主要贡献种有麦穗鱼、小黄䱂鱼、棒花鱼、黄颡鱼、鲫、子陵吻鰕虎鱼Rhinogobius giurinus Rutter、中间银Squalidus intermedius Nichols和林氏吻鰕虎鱼, 累积贡献度为90.16%; 组Ⅲ平均相似度为61.00%, 主要贡献种有麦穗鱼、宽鳍鱲、小黄䱂鱼、黑鳍鳈、鲫、黄颡鱼、泥鳅、棒花鱼、高体鳑鲏Rhodeus ocellatus Kner、兴隆山小鳔Microphysogobio hsinglungshanensis Mori、点纹银、刺鳅Sinobdella sinensis Bleeker和棒花Gobio rivuloides Nichols, 累积贡献度为91.23%。

    图  3  拒马河鱼类群落Cluster聚类和NMDS排序图
    Figure  3.  Clustering and NMDS sequencing analysis of fish community structure in the Juma River
    表  4  拒马河不同位点的主要贡献种相似性百分比分析
    Table  4.  The main contributionspecies of Juma River in different locals of similarity percentage analysis
    物种Species组Ⅰ GroupⅠ组Ⅱ GroupⅡ组Ⅲ GroupⅢ
    AAAS (%)Con (%)AAAS (%)Con (%)AAAS (%)Con (%)
    麦穗鱼Pseudorasbora parva277.5010.8721.30145.0014.2921.3651.919.1414.99
    Carassius auratus73.008.7417.149.006.239.3113.095.248.59
    小黄䱂鱼Micropercops swinhonis24.506.5612.8641.0010.9716.4031.917.2811.93
    泥鳅Misgurnus anguillicaudatus23.506.0011.769.093.635.95
    拉氏鱥Rhynchocypris lagowskii78.003.657.16
    赛丽高原鳅Triplophysa sellaefer17.502.825.54
    尖头鱥Rhynchocypris oxycephalus135.002.825.54
    达里湖高原鳅Triplophysa dalaica78.502.244.39
    林氏吻鰕虎鱼Rhinogobius lindbergi3.502.244.393.003.294.92
    棒花鱼Abbottina rivularis39.509.3914.044.732.433.98
    黄颡鱼Pelteobagrus fulvidraco15.007.1810.736.913.746.12
    子陵吻鰕虎鱼Rhinogobius giurinus8.504.827.20
    中间银Squalidus intermedius9.004.156.21
    宽鳍鱲Zacco platypus55.918.0713.22
    黑鳍鳈Sarcochilichthys nigripinnis32.557.264.33
    高体鳑鲏Rhodeus ocellatus5.552.313.79
    兴隆山小鳔Microphysogobio hsinglungshanensis13.822.163.54
    点纹银Squalidus wolterstorffi18.272.113.45
    刺鳅Sinobdella sinensis2.451.211.99
    棒花Gobio rivuloides2.361.091.78
    注: AA. 平均多度, AS. 平均相似度, Con. 贡献度Note: AA. average abund, AS. average similarity, Con. contribution
    下载: 导出CSV 
    | 显示表格

    鱼类群落的优势度曲线变化趋势(图 4)显示, 2020年8月拒马河鱼类群落的生物量优势度曲线位于丰度优势度曲线之上, 统计值W>0, 表示该月份鱼类群落结构稳定未受干扰, 其余月份的丰度累积百分比与生物量累积百分比的大小交错分布, ABC曲线中丰度优势度曲线与生物量优势度曲线相交, 统计量W<0, 鱼类群落受到中等程度干扰。2020年夏季数量优势度曲线和丰度优势度曲线均排在前5位的优势种类为麦穗鱼、宽鳍鱲和尖头鱥, 该季度所采集渔获物中, 平均个体生物量为8.99 g, 平均个体生物量最大的是黄颡鱼, 为30.86 g, 平均个体生物量最小的是福岛吻鰕虎鱼Rhinogobius fukushimai Mori, 为0.50 g。

    图  4  拒马河不同季节鱼类群落ABC曲线
    Figure  4.  ABC curves of fish community in the Juma River in different seasons

    DCA排序结果显示四个排序轴长度均小于3(表 5), 其中一、二轴长分别为2.84和2.28, 累积解释物种变化率为13.74%和22.72%, 物种和环境与排序轴相关性为94.14%、87.37%, 拒马河鱼类群落参数对环境因子的响应呈线性关系, 因此拒马河鱼类群落与环境因子分析适用于RDA分析。

    表  5  拒马河鱼类群落DCA分析
    Table  5.  Detrended correspondence analysis of fish community in the Juma River
    排序轴编号No.Axis 1Axis 2Axis 3Axis 4
    特征值Eigenvalues0.33060.21590.14020.0736
    排序轴梯度长度Gradient length2.842.282.131.81
    物种累计解释变量百分比
    Cumulative percentage explained variation of species (%)
    13.7422.7228.5431.60
    物种和环境因子与排序轴相关系数
    Species-environment correlations
    0.94140.87370.86880.8913
    下载: 导出CSV 
    | 显示表格

    RDA分析中第一轴和第二轴为主成分轴(表 6), 第一轴解释变化率为21.73%, 前两轴累计解释变化率为29.03%, 物种和环境同前两轴相关关系分别为94.66%和81.29%。拒马河鱼类群落与环境因子RDA排序图结果(图 5)显示, 影响拒马河鱼类群落结构组成影响最大的环境变量为海拔(ASL), 对主要种类的解释量为20.60%, 是显著影响因子(蒙特卡洛检验F=8.8, P=0.002), 海拔与pH(蒙特卡洛检验F=0.2, P=0.024)同第一轴的相关性较强。海拔对尖头高原鳅Triplophysa Cuneicephala Shaw & Tchang、达里湖高原鳅、尖头鱥、拉氏鱥、马口鱼Opsariichthys bidens Günther、蛇Saurogobio dabryi Bleeker、棒花鱼等影响较大。黑鳍鳈、刺鳅、瓦氏黄颡鱼Pelteobagrus vachellii Richardson等对pH的变化呈负相关, 而兴凯鱊Acanthorhodeus chankaensis Dybowski对pH的变化呈正相关。水温(蒙特卡洛检验F=2.8, P=0.008)与第二轴相关性较强, 对鲫、高体鳑鲏和乌苏里黄颡鱼Pelteobagrus ussuriensis Dybowski等的影响较大。

    表  6  拒马河鱼类群落RDA分析
    Table  6.  Redundancy analysis of fish community in the Juma River
    排序轴编号No.Axis 1Axis 2Axis 3Axis 4
    特征值Eigenvalues0.2170.0730.0470.034
    累计解释变化率
    Cumulative percentage explained variation (%)
    21.7329.0333.6937.09
    物种和环境因子与排序轴相关系数
    Species-environment correlations
    0.94660.81290.73150.5583
    累计解释拟合变化率
    Explained fitted variation (cumulative)
    50.1967.0577.8285.67
    下载: 导出CSV 
    | 显示表格
    图  5  拒马河鱼类与环境因子的RDA图
    Tem. 水温; Dep. 水深; DO. 溶解氧; Chl.a. 叶绿素a; SD. 透明度; ASL. 海拔; FNU. 浊度; PH. 酸碱度; sp1. 鲫; sp2. 兴凯鱊; sp3. 中华鳑鲏; sp4. 高体鳑鲏; sp5. 尖头鱥; sp6. 拉氏鱥; sp7. 宽鳍鱲; sp8. 马口鱼; sp9. 麦穗鱼; sp10. 点纹银; sp11. 中间银; sp12. 兴隆山小鳔; sp13. 黑鳍鳈; sp14. 棒花; sp15. 棒花鱼;sp16. 蛇; sp17. 泥鳅; sp18. 北方泥鳅; sp19. 大鳞副泥鳅; sp20. 花斑花鳅; sp21. 北鳅; sp22. 塞丽高原鳅; sp23. 尖头高原鳅; sp24. 达里湖高原鳅; sp25. 刺鳅; sp26. 黄鳝; sp27. 子陵吻鰕虎鱼; sp28. 林氏吻鰕虎鱼; sp29. 波氏吻鰕虎鱼; sp30. 福岛吻鰕虎鱼; sp31. 小黄䱂鱼; sp32. 圆尾斗鱼; sp33. 黄颡鱼; sp34. 瓦氏黄颡鱼; sp35. 乌苏里黄颡鱼; sp36. 鲇; sp37. 青鳉
    Figure  5.  Redundancy analysis of fish community and environmental factors in the Juma River
    Tem. temperature; Dep. depth; DO. dissolved oxygen; Chl.a. chlorophyll a; SD. transparency; ASL. altitude; FNU. formazin unit; pH. potential of hydrogen sp1. Carassius auratus; sp2. Acheilognathus chankaensis; sp3. Rhodeus sinensis; sp4. Rhodeus ocellatus; sp5. Rhynchocypris oxycephalus; sp6. Rhynchocypris lagowskii; sp7. Zacco platypus; sp8. Opsariichthys bidens; sp9. Pseudorasbora parva; sp10. Squalidus wolterstorffi; sp11. Squalidus intermedius; sp12. Microphysogobio hsinglungshanensis; sp13. Sarcochilichthys nigripinnis; sp14. Gobio rivuloides; sp15. Abbottina rivularis; sp16. Saurogobio dabryi; sp17. Misgurnus anguillicaudatus; sp18. Misgurnus bipartitus; sp19. Misgurnus dabryanus; sp20. Cobitis melanoleuca; sp21. Lefua costata; sp22. Triplophysa sellaefer; sp23. Triplophysa cuneicephala; sp24. Triplophysa dalaica; sp25. Sinobdella sinensis; sp26. Monopterus albus; sp27. Rhinogobius similis; sp28. Rhinogobius lindbergi; sp29. Rhinogobius cliffordpopei; sp30. Rhinogobius fukushimai; sp31. Micropercops swinhonis; sp32. Macropodus ocellatus; sp33. Tachysurus fulvidraco; sp34. Pelteobagrus vachellii; sp35. Pelteobagrus ussuriensis; sp36. Silurus asotus; sp37. Oryzias sinensis

    拒马河位于太行山迎风区北部, 北连西北山间盆地和北京西山地区, 西部以山西省为邻, 南部与大清河南支山区相接[31], 根据李国良[32]对河北淡水鱼类地理区系的划分, 拒马河流域大部分属于冀西山地, 海拔高度由500 m增至1000 m以上, 鱼类资源以条鳅科(赛丽高原鳅、达里湖高原鳅)、花鳅科(北方泥鳅Misgurnus bipartitus Dybowski、泥鳅)和鲤科中的雅罗鱼亚科(尖头鱥、拉氏鱥、马口鱼、宽鳍鱲)、亚科(麦穗鱼、点纹银、中间银)、鲃亚科(多鳞铲颌鱼Onychostoma macrolepis Bleeker)鱼类为主。根据历史记载, 拒马河鱼类资源并不丰富, 李国良[33]和王所安[20]记录了9种, 杨文波等[16]在2008年对拒马河北京段调查中监测到24种, 袁立来等[6]在2019—2020年对拒马河北京段调查中监测到33种。然而, 针对整个拒马河流域的调查, 近几十年未见报道。本研究在2019—2021年6次对拒马河鱼类资源调查中共发现37种, 与王鸿媛等[34]的记录相比减少了多鳞铲颌鱼、花䱻Hemibarbus maculatus Bleeker、黄线薄鳅Leptobotia flavolineata Wang、东方薄鳅Leptobotia orierntalis Xu, Fang & Wang和花斑副沙鳅Parabotia fasciata Dabry & Thiersant等, 这些鱼类对生态环境的改变极为敏感, 仅分布于水质清澈、溶氧量高和无污染的狭窄水域。综合之前调查[5, 6, 16], 这几种鱼类很可能已经在拒马河流域消失。受地理环境因素和人类活动的影响, 拒马河鱼类分布具有明显的区域性, 海拔在500 m以上的上游区域(组Ⅰ), 渔获物以花鳅科和条鳅科鱼类为主, 包括北鳅Lefua costata Kessler、达里湖高原鳅、赛丽高原鳅、尖头高原鳅、花斑花鳅Cobitis melanoleuca Nichols和北方泥鳅等; 海拔在200m以上的中游区域(组Ⅱ), 水生态环境受人类影响相对较小, 如S3和S4, 渔获物以棒花鱼、中间银为主要组成; 海拔在200 m以下的下游区域(组Ⅲ), 位于旅游景区, 水生态环境受到人类影响较大, 如自S5至S15, 渔获物以黑鳍鳈、麦穗鱼、小黄䱂鱼、高体鳑鲏和泥鳅等喜栖息小河流水环境具有一定耐受力的鱼类为主。组Ⅰ的平均相似性为51.01%, 小于组Ⅱ的66.92%和组Ⅲ的61.00%, 体现了拒马河上游地区相较于中下游地区更具生境多样性。

    2019—2021年拒马河优势种有鲫、麦穗鱼、黑鳍鳈和宽鳍鱲等, 按照初次性成熟小于2龄, 最大体长小于24 cm的鱼类划分为小型鱼类的标准[35], 拒马河鱼类群落优势种几乎都是小型鱼类。从食性上看, 拒马河鱼类以杂食性为主, 马口鱼、黄颡鱼和刺鳅等偏肉食性鱼类较少, 表明拒马河鱼类群落高位营养级少, 水生态环境更适合杂食性鱼类的生存。生态类型方面, 亲流性的鱼类物种数较多, 符合内陆河流鱼类组成特点, 但优势种中喜缓流及静水的鱼类较多, 原因可能是拒马河拦河坝的修建导致河流片段化, 部分河段水流速度减慢甚至形成小型静水湖泊, 破坏了亲流性鱼类的捕食、产卵场所同时也为喜静水的鱼类提供了更合适的栖息环境所导致[9, 36, 37], 在设计河坝时, 应优先考虑设计过鱼通道及保护可能因河坝建设而受到影响的鱼类, 降低因河坝的建设而导致的水文环境的改变对其造成的影响。在此次鱼类资源调查中, 麦穗鱼在所有月份都作为鱼类群落的优势种出现, 具有较高的生态优势度。麦穗鱼适应能力强、繁殖力高、食性广, 同拒马河土著鱼类构成了竞争关系, 且吞食鱼卵, 干扰产卵场, 对土著鱼类的生存构成极大威胁[38]。对于麦穗鱼多的河段, 应定期监控其种群动态, 必要情况下可采取人为措施控制其种群数量。

    多样性指数(H')和均匀度指数(J')是群落结构稳定的重要评价指标[39], 物种丰富度越高, 个体数分布越均匀, 群落结构越稳定, 多样性指数和均匀度指数也就较大, 反之, 物种受到环境的胁迫, 群落结构不稳定, 多样性指数则低。在本研究中, 拒马河鱼类群落夏季的多样性指数高于春、秋两季, 这可能与夏季水温上升鱼类的活动频率增加有关。鱼类群落结构及物种多样性可以衡量水体健康情况, 水生态环境恶化会直接影响鱼类的物种多样性, 拒马河鱼类群落的Shannon-Wiener多样性指数(H')、Margalef丰富度指数(DMa)及Pielou均匀度指数(J')均表明拒马河的水环境受到了一定程度的污染[40]

    Warwick[41]于1986年提出丰度生物量比较曲线用于判断鱼类群落稳定性。ABC曲线将生物量优势度曲线和丰度优势度曲线放置在同一坐标系中, 通过两条曲线的分布来分析鱼类群落的受干扰程度[42]。ABC曲线基于r选择和k选择的传统进化理论, 群落结构稳定时, 群落以k选择种类(生长慢, 性成熟晚的大个体种类)为主要组成, 生物量优势度曲线位于丰度优势度曲线之上。随着干扰的增加, k选择的物种逐渐减少而r选择的物种(生长快, 性成熟早的小个体种类)逐渐增加, 丰度生物量比较曲线随之发生改变, 群落受到中度干扰时, 生物量优势度曲线与丰度优势度曲线相交; 群落受到严重干扰时, 生物量优势度曲线位于丰度优势度曲线之下[43]。根据李胜法等[43]的研究标准, 拒马河鱼类群落整体只有2020年夏季结构稳定未受干扰, 其他月份鱼类群落结构受到中等程度的干扰, 但在拒马河不同河段受干扰程度存在差异, 海拔500 m以上的两个位点, 平均采集鱼类143.91尾, 显著高于海拔低于500 m位点的48.19尾, 并采集到数量可观的尖头鱥、拉氏鱥、赛丽高原鳅等对水质要求高的鱼类, 可看出该河段鱼类群落受扰动程度较小。

    拒马河鱼类多样性指数中个体数、物种数、多样性指数、丰富度指数在不同季节间呈现显著性差异, 表明拒马河鱼类群落主要受非生物因子的影响。Kadye等[44]研究证明, 温度、海拔、pH、溶解氧和距河口距离等是影响河流鱼类群落结构的主要环境因子。王卓等[45]在研究汉江平川段鱼类群落结构与环境因子的关系中发现电导率(Cond)、5日生化需氧量(BOD5)、pH和硫酸浓度是影响该江段鱼类群落结构的主要环境因子。本文通过RDA分析得出海拔是影响拒马河鱼类群落结构的主要环境因子, 对达里湖高原鳅、尖头高原鳅和北鳅等鳅科鱼类影响较大。水温作用于鱼类的分布、生长、繁殖和迁移, 对拒马河鱼类群落结构的影响仅次于海拔, 自拒马河源头至龙安大桥水温逐渐上升, 鲫和高体鳑鲏等温水性鱼类数量也逐渐增加。兴凯鱊与pH的变化呈正相关, 而棒花鱼、刺鳅和瓦氏黄颡鱼等同pH的变化呈负相关, pH会对鱼的摄食和生长产生影响, 也会影响鱼的感官、代谢、呼吸等生理过程[46]。溶解氧与波氏吻鰕虎鱼Rhinogobius cliffordpopei Nichols、福岛吻鰕虎鱼等小型肉食性鱼类相关性较强, 符合肉食性鱼类耗氧高的特点。叶绿素a也是影响拒马河鱼类群落结构的重要环境因子, 叶绿素a与浮游植物的密度密切相关, 对小黄䱂鱼和棒花鱼等杂食性鱼类影响较大。

    本研究系统地调查了拒马河鱼类资源, 共发现鱼类37种, 隶属于5目11科, 补充了拒马河上游区域的物种组成和地理分布等缺乏的基本问题, 为拒马河鱼类资源开发利用和资源保护提供了基础数据。基于等级聚类分析(Cluster)和非参数多变量排序(NMDS)分析发现, 拒马河鱼类分布在空间上具有明显的区域性, 上游以适应清澈流水环境的花鳅科和条鳅科鱼类为主; 中上游以棒花鱼、中间银为主; 中下游以黑鳍鳈、麦穗鱼、小黄䱂鱼和泥鳅等具有一定耐受力的鱼类为主, 这对拒马河生态修复和水利工程修建能提供理论依据。通过群落优势种和丰度生物量比较曲线分析发现, 拒马河以耐污性较强的小型鱼类为主, 主要为鲫、麦穗鱼、黑鳍鳈和宽鳍鱲等, 鱼类群落结构受到一定程度的干扰; 冗余分析显示, 海拔是影响拒马河鱼类分布的主要环境因子。拒马河是大清河水系的主要河流, 目前已有“北京市房山区拒马河水生野生动物自然保护区”, 建议进一步根据拒马河独特的水生态环境划定生态保护红线, 加强对该流域生物多样性的保护。

    附表  S1  拒马河鱼类分布
    Appendix  S1.  Fish species distribution in Juma River
    物种
    Species
    采样地点Sampling site
    拒马河
    源头
    刁江
    紫荆关
    大桥
    清凉
    小丰
    口桥
    别岸琅琊
    天花
    北石
    西河
    九渡六渡穆家
    千河
    龙安
    大桥
    鲤形目Cypriniformes
    鲤科Cyprinidae
    鲤亚科Cyprininae
    Carassius auratus+++++++++++++++
    鱊亚科AcheilognatSpnae
    兴凯鱊Acanthorhodeus chankaensis++
    中华鳑鲏Rhodeus sinensis+++
    高体鳑鲏Rhodeus ocellatus++++++++++
    雅罗鱼亚科Leuciscinae
    尖头鱥Rhynchocypris oxycephalus+++++++++
    拉氏鱥Rhynchocypris lagowskii+++++++
    襁亚科Danioninae
    宽鳍鱲Zacco platypus++++++++++++
    马口鱼Opsariichthys bidens++++++
    亚科Gobioninae
    麦穗鱼Pseudorasbora parva+++++++++++++++
    点纹银Squalidus wolterstorffi++++++++++
    中间银Squalidus intermedius+++++
    兴隆山小鳔Microphysogobio hsinglungshanensis+++++++++
    黑鳍鳈Sarcochilichthys nigripinnis+++++++++++
    棒花Gobio rivuloides++++++++++
    棒花鱼Abbottina rivularis+++++++++++++
    蛇Saurogobio dabryi++++
    花鳅科Cobitidae
    泥鳅Misgurnus anguillicaudatus++++++++++++++
    北方泥鳅Misgurnus bipartitus+
    大鳞副泥鳅Paramisgurnus dabryanus++++++
    花斑花鳅Cobitis melanoleuca++++
    条鳅科Nemacheilidae
    北鳅Lefua costata+
    赛丽高原鳅Triplophysa sellaefer++++
    尖头高原鳅Triplophysacuneicephala+
    达里湖高原鳅Triplophysa dalaica++++
    合鳃鱼目SymbrancSpformes
    刺鳅科Mastacembelidae
    刺鳅Sinobdella sinensis+++++++
    合鳃鱼科Symbranchidae
    黄鳝Monopterus albus+
    鲈形目Percoidei
    鰕虎鱼科Gobiidae
    子陵吻鰕虎鱼Rhinogobius giurinus++++
    林氏吻鰕虎鱼Rhinogobius lindbergi+++++++++
    波士吻鰕虎鱼Rhinogobius cliffordpopei+++++++
    福岛吻鰕虎鱼Rhinogobius fukushimai+++++++
    沙塘鳢科Odontobuidae
    小黄䱂鱼Micropercops swinhonis+++++++++++++++
    丝足鲈科Osphronemidae
    圆尾斗鱼Macropodus chinensis+++
    鲇形目Siluriformes
    鲿科Bagridae
    黄颡鱼Pelteobagrus fulvidraco+++++++++++++
    瓦氏黄颡鱼Pelteobagrus vachellii++++
    乌苏里黄颡鱼Pelteobagrus ussuriensis+++++
    鲇科Siluridae
    Silurus asotus+++++++
    颌针鱼Beloniformes
    青鳉科Adrianichthyidae
    青鳉Oryzias sinensis+
    注: “+”表示现场调查采集到样本Note: “+” represents collected fish species in the surveys
    下载: 导出CSV 
    | 显示表格
  • 图  1   环境因子和鱼类特性对洄游行为及过鱼设施效果的影响关系示意图

    Figure  1.   Diagram of the influence of environmental factors and fish traits on migratory behavior and fishway effectiveness

    图  2   松新鱼道水流诱鱼设施实拍图

    Figure  2.   Photograph of the water flow-based fish attraction facility at Songxin Fishway

    图  3   湘河鱼道声驱鱼设施实拍图

    Figure  3.   Photograph of the sound-based fish repulsion facility at Xianghe Fishway

    图  4   马马崖一级水电站集运鱼系统光诱鱼设施实拍图

    Figure  4.   Photograph of the light-based fish attraction facility in the fish transport system at Mamaya I Hydropower Station

    图  5   果多水电站集运鱼系统电驱鱼设施实拍图

    Figure  5.   Photograph of the electricity-based fish repulsion facility in the fish transport system at Guoduo Hydropower Station

    图  6   马堵山水电站集运鱼系统气泡幕拦导鱼设施示意图(图片源于[164])

    Figure  6.   Schematic diagram of the bubble curtain-based repulsion and guidance facility in the fish transport system at Madushan Hydropower Station (sourced from [164])

    表  1   近十年(2014—2024年)国内外关于鱼类对水流因子响应的研究进展

    Table  1   Advances in domestic and overseas studies on fish responses to hydraulic factors in the past decade (2014—2024)

    研究方法
    Study method
    实验鱼种
    Fish species
    具体表现
    Specific performance
    文献来源
    Reference
    1﹕2.5物理模型
    Hypophthalmichthys nobilis
    鲢在流速为0.15—0.45 m/s, 紊动能为0.020—0.043m2/s2, 紊动耗散率为0.020—0.065 m2/s3和应变率为2—7/s的通过次数较多, 且紊动能和流速是影响竖缝式鱼道中鲢通过时间的关键水力参数 [31]
    原型鱼道 短须裂腹鱼
    Schizothorax wangchiachii
    平行补水时鱼道进口平均吸引效率为26.47%, 垂直补水时鱼道进口平均吸引效率为13.11%, 补水角度和流量显著影响进口鱼类吸引时间 [50]
    1﹕10物理模型 草鱼
    Ctenopharyngodonidella
    在3种鱼道入口和河道的角度(30°、45°和60°)条件下, 入口角度从30°增加到60°时, 草鱼的能量消耗范围从1.26—3.59×10−3 J增加到3.32—7.33×10−3 J, 且鱼头部偏转角度增加 [51]
    物理模型 异齿裂腹鱼
    Schizothorax oconnor
    在鱼道高流速、低紊动能区域易发生折返现象, 而折返后鱼类多选择低流速、高紊动能区域重新上溯 [52]
    数值模拟 / 竖缝式鱼道模型中, 延长转弯段上下游长度的同时增设整流导板可有效引导主流居中, 维持主流稳定, 避免转弯段内产生大尺度回流区, 具有良好的上溯条件 [53]
    数值模拟 / 竖缝式鱼道模型中, 转弯角度大于90°时, 主流冲击程度河回流区尺度较大。在增设整流导板后, 转弯角度α的逐渐增加, 整流较好的导板位置趋于稳定 [54]
    原型鱼道 虹鳟
    Oncorhynchus mykiss
    当池堰式鱼道坡度为10%时, 最大紊动能增加到0.22 m2/s2; 当坡度为4%且堰距较大时, 最大紊动能减小到0.05 m2/s2, 达到鱼在堰间池室中休息的最佳条件 [55]
    物理模型
    Aristichthys nobilis
    鳙幼鱼上溯游泳行为主要受紊动强度的影响, 其偏好紊动强度范围在5.25—8.40 cm/s [56]
    数值模拟 齐口裂腹鱼
    Schizothorax prenanti
    鱼道模型3个进口均处于坝下左岸最大概率预测洄游路线上 [57]
    数值模拟 四大家鱼
    Four major Chinese carps
    当流速处于0.24—0.70 m/s时, 四大家鱼数量与流速呈正线性相关; 当水深值处于2.4—3.9 m时, 四大家鱼数量与水深呈正线性相关关系; 紊动能在0—0.0012 kg·m2/s2和0.0015—0.0040 kg·m2/s2时, 四大家鱼数量与紊动能分别呈正相关和负相关关系 [58]
    下载: 导出CSV

    表  2   近十年(2014—2024年)国内外关于鱼类对声因子诱驱响应的研究进展

    Table  2   Advances in domestic and overseas studies on fish attraction and repulsion responses to acoustic factors in the past decade (2014—2024)

    鱼种
    Fish species
    声音类型
    Sound type
    趋音性
    Phonotaxis
    具体表现
    Specific performance
    实验类型
    Experimental type
    文献来源
    Reference
    黑鲷
    Sparusmacrocephalus
    300和400 Hz正弦波交替音正趋音性正弦波交替音对黑鲷的反应和聚集具有明显的效果室内实验[69]

    Hypophthalmichthys molitrix
    短吻鳄吼叫声
    0—2000 Hz扫频音
    打桩声
    船舶噪声
    负趋音性
    负趋音性
    相对无趋音性
    相对无趋音性
    打桩声和鸣笛声对鲢无显著驱赶效果, 0—2000 Hz扫频音和短吻鳄吼叫声有显著驱赶效果, 且吼叫声效果更好室内实验[70]
    草鱼
    Ctenopharyngodonidellus
    1000 Hz单频音
    复杂音(鱼游动声、引擎声、短吻鳄吼叫声、打桩声和游艇声)
    相对无趋音性
    负趋音性
    单频音对草鱼无显著驱赶效果, 而复杂音对草鱼有显著驱赶效果, 体现在相比单频音显著更高的反应次数、趋音速度和运动时间室内实验[71]
    美洲拟鲽
    Pseudopleuronectes americanus
    船舶噪声负趋音性暴露于船舶噪声环境中的美洲拟鲽幼鱼的捕食行为明显少于无噪声对照组室内实验[72]
    草鱼
    Ctenopharyngodonidellus
    500—3000 Hz
    单频音
    扬子鳄吼叫声
    均负趋音性草鱼对扬子鳄吼叫声敏感程度远高于单频音, 平均反应次数高达(5.0±0.9)次, 且发生逃窜行为室内实验[79]
    草鱼
    Ctenopharyngodonidellus
    500—3000 Hz
    单频音
    摄食声
    相对无趋音性
    正趋音性
    单频音对草鱼无显著诱驱效果, 而摄食声对草鱼有显著聚集作用, 体现在相比单频音显著更高的趋音游泳速度和逗留时间室内实验[80]
    拉萨裸裂尻鱼
    Schizopygopsis younghusbandi
    双须叶须鱼
    Ptychobarbus dipogon
    斯氏高原鳅
    Triplophysa stoliczkae
    扬子鳄吼叫声均负趋音性三种鱼对扬子鳄吼叫声均表现回避反应, 且拉萨裸裂尻鱼和双须叶须鱼对吼叫声更为敏感野外实验[81]
    拉萨裸裂尻鱼
    Schizopygopsis younghusbandi
    扬子鳄吼叫声
    汽艇噪声
    打桩噪声
    负趋音性
    相对无趋音性
    相对无趋音性
    拉萨裸裂尻鱼对扬子鳄吼叫声表现为负趋音性, 且声强增加, 负趋音性增强, 但其对汽艇噪声和打桩噪声的负趋音性不显著, 且不受声强影响室内实验[82]
    大黄鱼
    Larimichthyscrocea
    船舶噪声负趋音性当噪声声压级<60 dB时, 大黄鱼幼鱼负趋音性不强烈, 但声压级增大, 趋避行为强度增大, 依次表现出: 游泳速度加快、鱼与鱼之间及鱼与桶壁之间发生碰撞、瞬间反应无序和跳跃等行为室内实验[83]
    裸腹叶须鱼
    Ptychobarbus kaznakovi
    摄食声
    河流噪声
    1000 Hz单频音
    均正趋音性摄食声引发裸腹叶须鱼显著的正趋声性, 效果优于1000 Hz单频音和河流噪声室内实验[84]
    裸腹叶须鱼
    Ptychobarbus kaznakovi
    500—3000 Hz
    单频音
    扬子鳄吼叫声
    均负趋音性只有15%的裸腹叶须鱼对单频音有一次反应, 而裸腹叶须鱼对扬子鳄吼叫声反应更剧烈, 平均有8.4次反应室内实验[85]
    真鱥
    Phoxinus phoxinus
    106—212 Hz倍频带噪声
    1556—3112 Hz倍频带噪声
    150 Hz正弦波
    2200 Hz正弦波
    均负趋音性真鱥对4种声音都会受到惊吓, 会降低平均群体游泳速度, 且低频正弦波音对群体行为的影响最大室内实验[86]
    大鳞吸口鱼
    Moxostomaaureolum
    淡水石口鱼
    Aplondinotusgrunniens
    大口黑鲈
    Micropterus salmoides
    虹鳟
    Oncorhynchus mykiss
    涡轮机噪声负趋音性
    正和负趋音性
    相对无趋音性
    相对无趋音性
    大鳞吸口鱼对持续的涡轮机噪声表现负趋音性, 保持远离声源; 淡水石口鱼在中等音量下, 先表现出负趋音性后表现出正趋音性, 而大口黑鲈和虹鳟对涡轮机噪声表现相对无趋音性室内实验[87]
    下载: 导出CSV

    表  3   近十年(2014—2024年)国内外关于鱼类对光因子诱驱响应的研究进展

    Table  3   Advances in domestic and overseas studies on fish attraction and repulsion responses to light factors in the past decade (2014—2024)

    鱼种
    Fish species
    偏好光色
    Preferred light color
    偏好光强
    Preferred light intensity
    具体表现
    Specific performance
    实验类型
    Experimental type
    文献来源
    Reference
    点带硬头鱼
    Craterocephalusstercusmuscarum
    西氏后鳍鲑
    Retropinnasemoni
    / 100—200 lx 点带硬头鱼和西氏后鳍鲑在昼夜光周期的调节下表现出显著的日间偏好。光照时间延长时, 它们的活动范围显著增加, 且克服迁徙障碍的概率也大幅增加 室内实验 [91]
    大西洋鲑
    Salmo salar
    / / 大西洋鲑在日照时间逐渐变短的季节, 鲑鱼会启动长距离洄游, 以确保在适宜的环境中完成繁殖 野外实验 [92]
    斑马鱼
    Danio rerio
    绿光
    紫光
    红光
    / 个体斑马鱼显著偏好绿光, 群体斑马鱼显著偏好紫光、红光和绿光, 个体群体均对黄光无趋光性 室内实验 [94]
    拉萨裂腹鱼
    Schizothorax waltoni
    绿光
    蓝光
    / 拉萨裂腹鱼在绿光和蓝光下表现为正趋光性, 在红光和黄光下表现为负趋光性 室内实验 [96]
    秦岭细鳞鲑
    Brachymystaxtsinlingensis
    绿光 10—25 lx 秦岭细鳞鲑稚鱼个体对3种光照强度(1—5、5—10和10—25 lx)和4种光照颜色(黄、红、绿和蓝)无明显趋避性, 而群体对强光和绿光有明显趋避性 室内实验 [99]
    草鱼
    Ctenopharyngodonidellus
    / 34.62—52.45 lx 草鱼幼鱼在静水、0.1和0.2 m/s流水情况下, 光强期望值分别为52.45、34.62和37.86 lx 室内实验 [103]

    Hypophthalmichthys molitrix
    红光
    蓝光
    绿光
    3.268—5.444 lx
    0.033—10.511 lx
    3.776—9.833 lx
    鲢的应激程度在红和绿光条件下随照度增加先增后减, 活跃性单调递增; 鲢的应激程度在蓝光条件下单调递增, 活跃性波动上升 室内实验 [104]
    拉萨裸裂尻鱼
    Schizopygopsis younghusbandi
    蓝光/深蓝光 / 在动水无底质条件下, 拉萨裸裂尻鱼均偏好于蓝光或深蓝光, 次亮光; 在静水有底质条件下主要偏好于暗光, 在无底质条件下偏好于次亮光 室内实验 [106]
    斑马鱼
    Danio rerio
    红光
    绿光
    紫光
    / 斑马鱼对红光、绿光和紫光的喜好程度较高, 对黄光的喜好程度较低 室内实验 [107]
    齐口裂腹鱼
    Schizothoraxprenanti
    绿光
    白光
    100—1000 lx
    0—1000 lx
    在100—1000 lx绿光条件下, 齐口裂腹鱼的尝试次数显著高于10—100 lx绿光以及同照度白光, 其他照度会引起其逃逸频率或滞留时间的提升 室内实验 [108]
    大麻哈鱼
    Oncorhynchus keta
    马苏大麻哈鱼
    Oncorhynchusmasou
    / 7.05 lx
    11.83—31.7 lx
    在强光条件下, 大麻哈鱼呈负趋光性, 未发现正趋光性; 而马苏大麻哈鱼无负趋光性, 但正趋光性随光强增大会减少 室内实验 [109]
    白鲟
    Acipenser transmontanus
    绿光 / 鲟鱼在白天和夜间条件下都表现出积极的趋光性, 且绿光引起的吸引力最大 室内实验 [110]
    中华倒刺鲃
    Spinibarbus sinensis
    绿光 / 中华倒刺鲃幼鱼鱼群更倾向于绿光, 其群体协调性和凝聚力相比白光有明显提高 室内实验 [111]
    下载: 导出CSV

    表  4   近十年(2014—2024年)国内外关于鱼类对电因子响应的研究进展

    Table  4   Advances in domestic and overseas studies on fish responses to electrical factors in the past decade (2014—2024)

    鱼种
    Fish species
    电学参数
    Electrical parameters
    具体表现
    Specific performance
    实验类型
    Experimental type
    文献来源
    Reference
    海七鳃鳗
    Petromyzon marinus
    虹鳟
    Oncorhynchus mykiss
    垂直布置: 3种脉冲电压(68.57、90.39和113.57 V)、4种电压梯度(0.43、0.68、0.72和0.94 V/cm)和4种脉冲宽度(1.6、8.2ms、41.8ms和300ms)交互组合
    水平布置: 3种脉冲电压(16、20和40 V)、3种电压梯度(0.05—0.34、0.06—0.42和0.15—0.85 V/cm)、脉冲频率3 Hz和脉冲宽度2ms交互组合
    垂直布置和水平布置的脉冲直流电鱼栅均能有效引导海七鳃鳗, 但垂直布置的电鱼栅对虹鳟的阻拦效果显著优于水平布置 室内实验 [112]

    Hypophthalmichthys nobilis

    Hypophthalmichthys-molitrix
    脉冲电压0.91 V/cm 在芝加哥的伊利诺斯河, 拦鱼电栅用于防止入侵鲢鳙上溯进入密歇根湖, 尽管拦鱼电栅对两种鱼的阻拦效果良好, 但在自身洄游需求和环境水流刺激下, 鱼类会在拦鱼电栅附近停留 野外实验 [115]

    Cyprinus carpio
    脉冲电压30 V、电压梯度0.2—0.4 V/cm、脉冲宽度0.3 ms和脉冲间隔时间10ms 通电后, 在电场的作用下, 鲤通过拦鱼电栅的次数明显减少, 且在刺激期布设电栅, 鲤鱼离开电屏障的时间比刺激前和刺激后更长 室内实验 [116]

    Cyprinus carpio
    脉冲电压70 V、脉冲宽度0.4ms和脉冲间隔时间6ms 垂直电栅在三个阶段中对鲤的季节性迁徙都有极好的阻拦效果, 阻拦率在95.8%—98.6% 野外实验 [117]
    虹鳟
    Oncorhynchus mykiss
    脉冲电压30 V、电压梯度0.2—0.4 V/cm、脉冲宽度0.3 ms和脉冲间隔时间10ms 通电后, 拦鱼电栅使虹鳟通过的时间明显减少, 且远离电栅时间更长。在停止通电后, 虹鳟仍保持远离电栅 室内实验 [118]
    大眼狮鲈
    Sander vitreus
    3种脉冲电压(0、60和80 V)和4种脉冲宽度(0.3ms、0.5ms和0.8ms)交互组合 脉冲直流电不仅减少了大眼狮鲈的靠近, 还导致其偏转避开电屏障的几率增加, 这导致了近80%的逃逸率 室内实验 [120]

    Hypophthalmichthys molitrix
    3种脉冲电压(80、110和140 V), 3种脉冲频率(6、8和10 Hz)和3种脉冲宽度(10ms、20ms和30ms)交互组合 影响拦鱼电栅对鲢阻拦效果由大到小的因素依次为脉冲电压、脉冲宽度、电极布置方式、脉冲频率, 在静水条件下, 拦鱼电栅对鲢的平均阻拦率在水流速度增至0.3 m/s时仍可达100%, 但进一步增至0.5 m/s时阻拦率有一定下降 室内实验 [122]
    草鱼
    Ctenopharyngodonide-llus
    4种脉冲电压(120、160、200和240 V/m)、4种脉冲频率(2、4、6和8 Hz)和4种脉冲宽度(10ms、12ms、14ms和16ms)交互组合 影响拦鱼电栅对草鱼阻拦效果由大到小的因素依次为脉冲电压、脉冲频率、脉冲宽度; 静水条件下脉冲电压160V/m、脉冲频率6 Hz和脉冲宽度16 ms的拦鱼电栅效果最好 室内实验 [123]
    欧洲鳗鲡
    Anguilla anguilla
    3种脉冲频率(2 Hz单脉冲、2 Hz双脉冲和10 Hz单脉冲) 相比双脉冲, 单脉冲需要更低的电场强度才能引起欧洲鳗鲡抽搐, 而电场强度对其反应无影响 室内实验 [124]

    Hypophthalmichthys molitrix
    3种脉冲电压(80、110和140 V), 3种脉冲频率(6、8和10 Hz)和3种脉冲宽度(10ms、20ms和30ms)交互组合 影响拦鱼电栅对鲢阻拦效果和损伤率由大到小的因素依次为电极布置方式、脉冲电压、脉冲宽度和脉冲频率, 且阻拦效果和损伤率随流速增加无显著差异 室内实验 [125]
    虹鳟
    Oncorhynchus mykiss
    3种脉冲电压(51.4、69.0±0.8和91.4±0.8 V)、电压梯度0.00—0.45 V/cm、脉冲频率30 Hz和脉冲宽度0—0.7ms 当脉冲宽度较大时, 虹鳟鱼幼鱼和成年虹鳟鱼避开了电栅, 当脉冲宽度为0.7ms时, 通过电栅的虹鳟数量比脉冲宽度为0.1ms时少, 且未发现电压梯度对阻拦效果的影响 室内实验 [126]

    Cyprinus carpio
    3种电极布置方式(垂直于水流方向且两排电极间距为80 cm、垂直于水流方向且两排电极间距为160 cm及与水流方向呈68°且两排电极间距为80 cm)、3种脉冲电压(80、110和140 V)、3种脉冲频率(6、8和10 Hz)和3种脉冲宽度(10、20和30 ms) 影响拦鱼电栅对鲤阻拦效果由大到小的因素依次为电极布置方式、脉冲宽度、脉冲频率和脉冲电压。垂直水流间距80 cm布置、脉冲电压140 V、脉冲频率10 Hz以及脉冲宽度10ms拦鱼效果最佳, 且随着脉冲宽度的增加, 平均受伤尾数相应增加, 随着脉冲电压的增加, 平均受伤尾数降低 室内实验 [127]
    点纹似白鱼
    Alburnoidesbipunctatus
    欧洲鳗鲡
    Anguilla Anguilla
    脉冲电压38 V、脉冲宽度0.3ms和脉冲间隔时间7ms 拦鱼电栅对点纹似白鱼和欧洲鳗鲡的保护效果较好, 对前者的保护率可达96%, 对后者的保护率也有86% 室内实验 [128]
    下载: 导出CSV

    表  5   近十年(2014—2024年)国内外关于鱼类对气泡幕响应的研究进展

    Table  5   Advances in domestic and overseas studies on fish responses to bubble curtains in the past decade (2014—2024)

    鱼种
    Fish species
    气泡幕结构
    Bubble curtain structure
    具体表现
    Specific performance
    实验类型
    Experimental type
    文献来源
    Reference

    Cyprinus carpio
    30 cm孔距和2.5 cm气泡幕; 5 cm孔距和2.5 cm孔径梯度泡幕; 5 cm孔距和2.5 cm孔径粗泡幕 梯度泡幕和粗泡幕可以减少鲤在上溯和下行两个方向通过气泡幕率几率达75%—85% 室内实验 [129]
    虹鳟
    Oncorhynchus mykiss
    4种孔距(1.0、2.0、3.0 和4.0 cm), 4种孔径(0.5、1.0、1.5 和2.0 mm)和3种气量(60、120 和180 L/min)交互组合 光照环境下, 孔径1.0 mm、孔距2.0 cm和气量120 L/min的气泡幕阻拦效果最好, 可达(96.32±3.99)%, 而黑暗条件气泡幕的阻拦率有所降低, 为(87.48±2.55)% 室内实验 [131]
    光倒刺鲃
    Spinibarbus hollandi
    3种孔距(1.0、2.5和
    4.0 cm), 3种孔径(1.0、1.5 和2.0 mm)交互组合
    静水时, 9种组合产生的气泡幕对光倒刺鲃均有较好的阻拦效果, 达90%以上。流水环境提升了阻拦效果, 而闪光对光倒刺鲃有吸引作用 室内实验 [134]

    Cyprinus carpio

    Hypophthalmichthysnobilis

    Hypophthalmichthys molitrix
    15 cm孔距和3 mm孔径 气泡幕对鲢、鳙和鲤均具有显著且相似的阻拦效果, 使其通过原路径的次数减少了73%—80% 室内实验 [135]

    Cyprinus carpio
    5 cm孔距和2.5 cm孔径梯度泡幕 气泡幕对下行迁移的鲤幼鱼表现出较强的阻拦效果, 而对上溯成鱼的阻拦效果则相对较弱 野外实验 [136]
    大泷六线鱼
    Hexagrammosotakii
    2种孔径(1.0和2.0 mm), 2种孔距(2.5和5.0 cm)交互组合 4种组合产生的气泡幕均有明显的阻拦作用, 其中孔径1.0 mm与孔距2.5 cm组合的气泡幕阻拦效果最好, 平均阻拦率为53.2% 室内实验 [137]
    异齿裂腹鱼
    Schizothorax oconnori
    3种气量(60、90和
    120 L/min)
    3种气量的气泡幕均有明显的阻拦效果, 气量60 L/min的气泡幕阻拦率最高, 为81.3%; 而其他气量的气泡幕附近存在鱼类停留现象 室内实验 [138]
    异齿裂腹鱼
    Schizothorax oconnori
    2种摆放角度(与水流方向呈90°和45°)下, 3种气量(15、30和45 L/min)交互组合 相比于静水条件, 流水条件下的气泡幕的影响距离更远, 垂直于水流方向布置效果更好, 且异齿裂腹鱼在尝试6次后会表现出适宜性 室内实验 [142]

    Hypophthalmichthysnobilis

    Cyprinus carpio
    大口黑鲈
    Micropterus salmoides
    30 cm孔距和2.5 cm
    气泡幕
    声波与气泡幕结合对三种鱼相比单独布置气泡幕有更好的阻拦效果, 当和20—2000 Hz的循环声音结合, 可有效阻拦97%的入侵鳙 室内实验 [143]
    大西洋鲑
    Salmo salar
    1 cm孔距和1 mm孔径 在光线充足的白天, 气泡幕对大西洋鲑幼鱼的引导效率在实验室条件下达到95%, 自然环境中也能达到90%; 而在黑暗环境下, 效果显著降低 室内实验和野外实验 [144]
    食蚊鱼
    Gambusia affinis
    / 日间条件下, 气泡幕显著增加了其两侧的鱼类数量, 但夜间气泡幕两侧的诱鱼效果并不显著 野外实验 [145]
    大鳞大麻哈鱼
    Oncorhynchus tshawytscha
    2.0 L/s的单位长度气泡速率 气泡幕与频闪灯和噪声发生器结合组成的生物声学鱼屏障, 有效引导了大鳞大麻哈鱼幼鱼避开低生存率的迁徙路线 野外实验 [146]
    大泷六线鱼
    Hexagrammosotakii
    3种气量(60、120和
    180 L/min)
    3种气量的气泡幕对大泷六线鱼均有明显的阻拦效果, 且180 L/min气泡幕阻拦效果最好 室内实验 [147]

    Hypophthalmichthys molitrix
    8种气量(10、20、30、40、60、80、100和
    120 L/min)
    8种气量的气泡幕对鲢幼鱼都有阻拦效果, 其中, 20和30 L/min气泡幕阻拦效果最好, 气泡幕的气量与阻拦效果呈先上升后下降的趋势 室内实验 [150]
    下载: 导出CSV
  • [1] 朱党生. 河流开发与流域生态安全 [M]. 北京: 中国水利水电出版社, 2012.]

    Zhu D S. River Development and Watershed Ecological Security [M]. Beijing: China Water & Power Press, 2012. [

    [2] 何艺玥, 刘玉莹, 张富斌, 等. 梯级水利工程背景下的嘉陵江干流蛇鮈群体遗传多样性和遗传结构 [J]. 生物多样性, 2023, 31 (11): 23160.]

    He Y Y, Liu Y Y, Zhang F B, et al. Genetic diversity and population structure of Saurogobio dabryi under cascade water conservancy projects in the Jialing River [J]. Biodiversity Science, 2024, 31 (11): 23160. [

    [3]

    International Commission on Large Dams. General Synthesis: Number of Dams by Country Members [EB/OL]. [2024-08-01]. https://www.icold-cigb.org/article/GB/world_register/general_synthesis/number-of-dams-bycountry-members.

    [4] 张艳艳, 何贞俊, 何用, 等. 低水头闸坝工程鱼道过鱼效果评价 [J]. 水利学报, 2017, 48(6): 748-756.]

    Zhang Y Y, He Z J, He Y, et al. Analysis on the efficiency of fishway for the low-head gate dam [J]. Journal of Hydraulic Engineering, 2017, 48(6): 748-756. [

    [5] 陈求稳, 张建云, 莫康乐, 等. 水电工程水生态环境效应评价方法与调控措施 [J]. 水科学进展, 2020, 31(5): 793-810.]

    Chen Q W, Zhang J Y, Mo K L, et al. Effects of hydropower development on aquatic eco-environment and adaptive managements [J]. Advances in Water Science, 2020, 31(5): 793-810. [

    [6]

    Sun J J, Tan J J, Zhang Q, et al. Attraction and passage efficiency for salmonids and non-salmonids based on fishway: A meta-analysis approach [J]. River Research and Applications, 2023, 39(10): 1933-1949. doi: 10.1002/rra.4194

    [7]

    Benitez J P, Dierckx A, Rimbaud G, et al. Assessment of fish abundance, biodiversity and movement periodicity changes in a large river over a 20-year period [J]. Environments, 2022, 9(2): 22. doi: 10.3390/environments9020022

    [8]

    Yi Y J, Tang C H, Yang Z F, et al. Influence of Manwan Reservoir on fish habitat in the middle reach of the Lancang River [J]. Ecological Engineering, 2014(69): 106-117.

    [9] 熊飞, 张伟, 翟东东, 等. 蓄水后向家坝库区鱼类物种、分类和功能多样性变化 [J]. 湖泊科学, 2024, 36(1): 200-212.] doi: 10.18307/2024.0132

    Xiong F, Zhang W, Zhai D D, et al. Changes of species, taxonomic and functional diversity of fish assemblages in the Xiangjiaba Reservoir of the lower Jinsha River after impoundment [J]. Journal of Lake Sciences, 2024, 36(1): 200-212. [ doi: 10.18307/2024.0132

    [10] 刘明典, 马波, 张驰, 等. 西藏河流裂腹鱼类分布格局及环境影响因素——以怒江和雅鲁藏布江为例 [J]. 生态环境学报, 1792, 29(9): 1792-1800.]

    Liu M D, Ma B, Zhang C, et al. Distribution pattern and environmental impact factors of Schizothoracinae fishes in the rivers of Tibet: The case of Nujiang River and Yalu Zangbo River [J]. Ecology and Environmental Sciences, 1792, 29(9): 1792-1800. [

    [11]

    Chen K Q, Tao J, Chang Z N, et al. Difficulties and prospects of fishways in China: An overview of the construction status and operation practice since 2000 [J]. Ecological Engineering, 2014(70): 82-91.

    [12]

    Branco P, Amaral S D, Ferreira M T, et al. Do small barriers affect the movement of freshwater fish by increasing residency [J]? Science of the Total Environment, 2017( 581 ): 486-494.

    [13]

    Sun J R, Du W L, Lucas M C, et al. River fragmentation and barrier impacts on fishes have been greatly underestimated in the upper Mekong River [J]. Journal of Environmental Management, 2023(327): 116817.

    [14] 陈凯麒, 常仲农, 曹晓红, 等. 我国鱼道的建设现状与展望 [J]. 水利学报, 2012, 43(2): 182-188+197.]

    Chen K Q, Chang Z N, Cao X H, et al. Status and prospection of fish pass construction in China [J]. Journal of Hydraulic Engineering, 2012, 43(2): 182-188+197. [

    [15]

    Katopodis C, Williams J G. The development of fish passage research in a historical context [J]. Ecological Engineering, 2012(48): 8-18.

    [16]

    Silva A T, Lucas M C, Castro-Santos T, et al. The future of fish passage science, engineering, and practice [J]. Fish and Fisheries, 2018, 19(2): 340-362. doi: 10.1111/faf.12258

    [17] 张东亚. 水利水电工程对鱼类的影响及保护措施 [J]. 水资源保护, 2011, 27(5): 75-77.]

    Zhang D Y. Influence of water conservancy and hydropower engineering on fish and protection measures [J]. Water Resources Protection, 2011, 27(5): 75-77. [

    [18] 祁昌军, 曹晓红, 温静雅, 等. 我国鱼道建设的实践与问题研究 [J]. 环境保护, 2017, 45(6): 47-51.]

    Qi C J, Cao X H, Wen J Y, et al. The practice and problems of the fishway construction in China [J]. Environmental Protection, 2017, 45(6): 47-51. [

    [19]

    Shi X T, Ke S F, Tu Z Y, et al. Swimming capability of target fish from eight hydropower stations in China relative to fishway design [J]. Canadian Journal of Fisheries and Aquatic Sciences, 2022, 79(1): 124-132. doi: 10.1139/cjfas-2020-0468

    [20]

    Castro-Santos T, Shi X T, Haro A. Migratory behavior of adult sea lamprey and cumulative passage performance through four fishways [J]. Canadian Journal of Fisheries and Aquatic Sciences, 2017, 74(5): 790-800. doi: 10.1139/cjfas-2016-0089

    [21] 何大仁, 蔡厚才. 鱼类行为学 [M]. 厦门: 厦门大学出版社, 1998.]

    He D R, Cai H C. Ichthyology of Fish Behavior [M]. Xiamen, China: Xiamen University Press, 1998. [

    [22] 胡望斌, 韩德举, 高勇, 等. 鱼类洄游通道恢复——国外的经验及中国的对策 [J]. 长江流域资源与环境, 2008, 17(6): 898-903.]

    Hu W B, Han D J, Gao Y, et al. Restoration of fish migration: Practice of foreign countries and strategies of China [J]. Resources and Environment in the Yangtze Basin, 2008, 17(6): 898-903. [

    [23]

    Bao J H, Li W W, Zhang C S, et al. Quantitative assessment of fish passage efficiency at a vertical-slot fishway on the Daduhe River in Southwest China [J]. Ecological Engineering, 2019(141): 105597.

    [24]

    Clay C H. Design of Fishways and Other Fish Facilities [M]. Boca Raton, FL: Lewis Publishers, CRC Press, 2017: 256.

    [25]

    Schütz C, Henning M, Czerny R, et al. Addition of auxiliary discharge into a fishway-A contribution to fishway design at barrages of large rivers [J]. Ecological Engineering, 2021(167): 106257.

    [26]

    Liao J C, Beal D N, Lauder G V, et al. Fish exploiting vortices decrease muscle activity [J]. Science, 2003, 302(5650): 1566-1569. doi: 10.1126/science.1088295

    [27] 柯森繁, 陈渴鑫, 罗佳, 等. 鲢顶流游泳速度与摆尾行为相关性分析 [J]. 水产学报, 2017, 41(3): 401-406.]

    Ke S F, Chen K X, Luo J, et al. Correlation analysis between upstream swimming speed and tail-beat behavior of Hypophthalmichthys molitrix [J]. Journal of Fisheries of China, 2017, 41(3): 401-406. [

    [28] 杨根, 王丽, 杨胜发, 等. 持续运动野化训练对草鱼幼鱼趋流性影响研究 [J]. 人民黄河, 2023, 45(S1): 56-57.]

    Yang G, Wang L, Yang S F, et al. Study on the effect of continuous exercise and wild environment training on the rheotaxis of juvenile grass carp [J]. Yellow River, 2023, 45(S1): 56-57. [

    [29] 傅菁菁, 李嘉, 安瑞冬, 等. 基于齐口裂腹鱼游泳能力的竖缝式鱼道流态塑造研究 [J]. 四川大学学报(工程科学版), 2013, 45(3): 12-17.]

    Fu J J, Li J, An R D, et al. Study of creating vertical slot fishway flow field based on swimming ability of Schizothorax prenanti [J]. Journal of Sichuan University (Engineering Science Edition), 2013, 45(3): 12-17. [

    [30] 谭均军, 高柱, 戴会超, 等. 竖缝式鱼道水力特性与鱼类运动特性相关性分析 [J]. 水利学报, 2017, 48(8): 924-932+944.]

    Tan J J, Gao Z, Dai H C, et al. The correlation analysis between hydraulic characteristics of vertical slot fishway and fish movement characteristics [J]. Journal of Hydraulic Engineering, 2017, 48(8): 924-932+944. [

    [31]

    Tan J J, Gao Z, Dai H C, et al. Effects of turbulence and velocity on the movement behaviour of bighead carp (Hypophthalmichthys nobilis) in an experimental vertical slot fishway [J]. Ecological Engineering, 2019(127): 363-374.

    [32] 贾召文, 黄子叶, 王猛, 等. 西藏扎拉水电站竖缝式鱼道池室水力特性研究 [J]. 水利水电快报, 2024, 45(6): 69-75+115.]

    Jia Z W, Huang Z Y, Wang M, et al. Research on hydraulic characteristics of vertical slot fishway pools of Xizang Zhala Hydropower Station [J]. Express Water Resources & Hydropower Information, 2024, 45(6): 69-75+115. [

    [33] 韩雷, 吕春玮, 王正君, 等. 墩头角度对竖缝式鱼道水力特性的影响 [J]. 长江科学院院报, 2024, 41(6): 84-90+97.]

    Han L, Lü C W, Wang Z J, et al. Influence of pier head angle on hydraulic characteristics of vertical slot fishway [J]. Journal of Changjiang River Scientific Research Institute, 2024, 41(6): 84-90+97. [

    [34] 吕阳阳, 杨路华, 王凡, 等. 墩头结构及间距变化对竖缝式鱼道水力特性的影响 [J]. 水电能源科学, 2023, 41(7): 150-153+126.]

    Lü Y Y, Yang L H, Wang F, et al. Influence of structure and interval variation on hydraulic characteristics of vertical slot fishway [J]. Water Resources and Power, 2023, 41(7): 150-153+126. [

    [35]

    Yuan H, Chen B Y, Sun Q, et al. Deciphering the effect of variation in slope on flow characteristics in a vertical slot fishway [J]. Journal of Hydro-Environment Research, 2024(54): 1-12.

    [36] 蔡露, Katopodis C, 金瑶, 等. 中国鲤科鱼类游泳能力综合分析和应用 [J]. 湖泊科学, 2022, 34(6): 1788-1801.] doi: 10.18307/2022.0600

    Cai L, Katopodis C, Jin Y, et al. Comprehensive analysis and application of Chinese Cyprinidae swimming ability [J]. Journal of Lake Sciences, 2022, 34(6): 1788-1801. [ doi: 10.18307/2022.0600

    [37] 陈柏宇, 袁浩, 何小泷. 坡度变化对竖缝式鱼道水力特性的影响研究 [J]. 中国农村水利水电, 2022(10): 242-248.]

    Chen B Y, Yuan H, He X L. Research on the effect of the slope gradient variation on the hydraulic characteristics of the vertical slot fishway [J]. China Rural Water and Hydropower, 2022(10): 242-248. [

    [38] 佟雪丰, 李卫明, 刘德富, 等. 丹尼尔式鱼道内水流紊动特性试验研究 [J]. 水电能源科学, 2016, 34(2): 94-97+128.]

    Tong X F, Li W M, Liu D F, et al. Test research on turbulence dynamic characteristics of water flow in Daniel fishway [J]. Water Resources and Power, 2016, 34(2): 94-97+128. [

    [39] 朱澄浩, 李卫明, 郭泽云, 等. 丹尼尔式鱼道隔板形式变化对水力特性的影响研究 [J]. 水力发电, 2019, 45(7): 61-65.]

    Zhu C H, Li W M, Guo Z Y, et al. Study on the influences of Denil fishway partition type on hydraulic characteristics [J]. Water Power, 2019, 45(7): 61-65. [

    [40]

    Ke S F, Goerig E, Pang K W, et al. Evaluation of pool-and-weir fishway efficiency for the upstream spawning migration of Qinghai Lake's naked carp [J]. Ecological Engineering, 2024(208): 107373.

    [41] 范穗兴, 蒋光灿, 黄天宝. 大藤峡水利枢纽南木江鱼道水力衔接段的研究应用 [J]. 人民珠江, 2022, 43(12): 6-12.] doi: 10.3969/j.issn.1001-9235.2022.12.002

    Fan S X, Jiang G C, Huang T B. Research and application of the hydraulic connection section in Nanmujiang River Fishway at Datengxia Water Conservancy Project [J]. Pearl River, 2022, 43(12): 6-12. [ doi: 10.3969/j.issn.1001-9235.2022.12.002

    [42]

    Sun J J, Shi J Y, Zhang Q, et al. Survey on performance of vertical slot and nature-like fishways at Angu hydropower station, Southwest China [J]. Water Science and Engineering, 2024, 17(1): 83-91. doi: 10.1016/j.wse.2023.09.007

    [43] 李广宁, 孙双科, 柳海涛, 等. 仿自然鱼道中卵石墙对池室水力特性改善效果 [J]. 农业工程学报, 2017, 33(15): 184-189.] doi: 10.11975/j.issn.1002-6819.2017.15.024

    Li G N, Sun S K, Liu H T, et al. Improving effect of hydraulic characteristics of nature-like fishway with pools and cobblestone weirs [J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(15): 184-189. [ doi: 10.11975/j.issn.1002-6819.2017.15.024

    [44] 张艳艳, 胡晓张, 杨芳, 等. 仿自然型鱼道结构形式改进及水力特性试验研究 [J]. 人民长江, 2021, 52(4): 225-229.]

    Zhang Y Y, Hu X Z, Yang F, et al. Experimental study on structure improvement and hydraulic characteristics of artificial natural-like fishway [J]. Yangtze River, 2021, 52(4): 225-229. [

    [45]

    Tan J J, Tao L, Gao Z, et al. Modeling fish movement trajectories in relation to hydraulic response relationships in an experimental fishway [J]. Water, 2018, 10(11): 1511. doi: 10.3390/w10111511

    [46]

    Chen M, An R, Li J, et al. Identifying operation scenarios to optimize attraction flow near fishway entrances for endemic fishes on the Tibetan Plateau of China to match their swimming characteristics: A case study [J]. Science of the Total Environment, 2019(693): 133615.

    [47] 白艳勤, 路波, 罗佳, 等. 草鱼、鲢和瓦氏黄颡鱼幼鱼感应流速的比较 [J]. 生态学杂志, 2013, 32(8): 2085-2089.]

    Bai Y Q, Lu B, Luo J, et al. Induction velocity of juvenile grass carp, silver carp, and darkbarbel catfish [J]. Chinese Journal of Ecology, 2013, 32(8): 2085-2089. [

    [48]

    Elings J, Bruneel S, Pauwels I S, et al. Finding navigation cues near fishways [J]. Biological Reviews, 2023, 99(1): 313-327.

    [49] 张文传, 陈江, 甘亮, 等. 鄱阳湖水利枢纽鱼道布置方案及进口环境流场模拟研究[J]. 水电能源科学, 291 (11): 73-78.]

    Zhang W C, Chen J, Gan L, et al. Study on the layout of fishway and environmental flow field simulation of entrances in Poyang Lake Water Control Project [J]. Water Resources and Power, 291 (11): 73-78. [

    [50] 谭均军, 王德辰, 王渊洋, 等. 不同补水方式下鱼道进口诱鱼效果分析 [J/OL]. 湖泊科学. https://link.cnki.net/urlid/32.1331.p.20240927.1346.002.]

    Tan J J, Wang D C, Wand Y Y, et al. The efficiency of fishway with different water replenishment methods [J/OL]. Journal of Lake Sciences. https://link.cnki.net/urlid/32.1331.p.20240927.1346.002. [

    [51]

    Mi Y M, Tan J J, Tan H L, et al. Ctenopharyngodon idella’s movement behavior in response to hydraulics at fishway entrance with different entrance angles [J]. Water, 2024, 16 (15): 2168.

    [52] 吴震, 杨忠勇, 石小涛, 等. 异齿裂腹鱼上溯过程中的折返行为及其与水力条件的关系 [J]. 生态学杂志, 2019, 38(11): 3382-3393.]

    Wu Z, Yang Z Y, Shi X T, et al. The reentry behavior and its relationship with hydraulic conditions during upstream migration of Schizothorax o’connori [J]. Chinese Journal of Ecology, 2019, 38(11): 3382-3393. [

    [53] 杨超, 谭均军, 刘振彪, 等. 竖缝式鱼道180°转弯段水力特性与结构优化研究 [J]. 水电能源科学, 2023, 41(7): 141-145.]

    Yang C, Tan J J, Liu Z B, et al. Study on hydraulic characteristic and structural optimization of flow in 180° turning pools for vertical slot fishways [J]. Water Resources and Power, 2023, 41(7): 141-145. [

    [54] 李国岭, 陈胜, 贺蔚, 等. 竖缝式鱼道90°~180°转弯段水力特性及优化研究 [J]. 中国农村水利水电, 2024(5): 113-121.] doi: 10.12396/znsd.231700

    Li G L, Chen S, He W, et al. Study on hydraulic characteristics and optimization of 90°~180° turning section of vertical slot fishway [J]. China Rural Water and Hydropower, 2024(5): 113-121. [ doi: 10.12396/znsd.231700

    [55]

    Shahabi M, Ghomeshi M, Ahadiyan J, et al. Do fishways stress fish? Assessment of physiological and hydraulic parameters of rainbow trout navigating a novel W-weir fishway [J]. Ecological Engineering, 2021(169): 106330.

    [56] 宋基权, 王继保, 黄伟, 等. 鳙幼鱼游泳行为与紊动强度响应关系 [J]. 生态学杂志, 2018, 37(4): 1211-1219.]

    Song J Q, Wang J B, Huang W, et al. The response of swimming behavior of juvenile Aristichthys nobilis to turbulence intensity [J]. Chinese Journal of Ecology, 2018, 37(4): 1211-1219. [

    [57] 刘小帆, 安瑞冬, 李嘉, 等. 齐口裂腹鱼对大坝下游流态的响应及近坝区上溯路线预测 [J]. 水电能源科学, 2020, 38(1): 112-115+138.]

    Liu X F, An R D, Li J, et al. Response of Schizothorax prenanti to the downstream flow pattern of dam and prediction of upstream movement route in the near dam area [J]. Water Resources and Power, 2020, 38(1): 112-115+138. [

    [58] 李芳, 安瑞冬, 马卫忠, 等. 鱼类坝下集群效应对水力学条件的响应规律研究 [J]. 中国农村水利水电, 2018(10): 87-91+117.]

    Li F, An R D, Ma W Z, et al. Research on the response pattern of fish schooling effect on hydraulic conditions under the dam [J]. China Rural Water and Hydropower, 2018(10): 87-91+117. [

    [59]

    Popper A N, Carlson T J. Application of sound and other stimuli to control fish behavior [J]. Transactions of the American Fisheries Society, 1998, 127(5): 673-707. doi: 10.1577/1548-8659(1998)127<0673:AOSAOS>2.0.CO;2

    [60]

    Popper A N, Hawkins A D. An overview of fish bioacoustics and the impacts of anthropogenic sounds on fishes [J]. Journal of Fish Biology, 2019, 94(5): 692-713. doi: 10.1111/jfb.13948

    [61]

    Zielinski D P, Sorensen P W. Silver, bighead, and common carp orient to acoustic particle motion when avoiding a complex sound [J]. PLoS One, 2017, 12(6): e0180110. doi: 10.1371/journal.pone.0180110

    [62]

    Dinh J P, Radford C. Acoustic particle motion detection in the snapping shrimp (Alpheus richardsoni) [J]. Journal of Comparative Physiology a-Neuroethology Sensory Neural and Behavioral Physiology, 2021, 207(5): 641-655. doi: 10.1007/s00359-021-01503-4

    [63]

    Carr C E. Pressure and particle motion enable fish to sense the direction of sound [J]. Nature, 2024, 631(8019): 29-30. doi: 10.1038/d41586-024-01509-3

    [64]

    Veith J, Chaigne T, Svanidze A, et al. The mechanism for directional hearing in fish [J]. Nature, 2024, 631(8019): 118-124. doi: 10.1038/s41586-024-07507-9

    [65]

    Campbell J, Shafiei Sabet S, Slabbekoorn H. Particle motion and sound pressure in fish tanks: A behavioural exploration of acoustic sensitivity in the zebrafish [J]. Behavioural Processes, 2019(164): 38-47.

    [66]

    Schulz-Mirbach T, Ladich F, Mittone A, et al. Auditory chain reaction: Effects of sound pressure and particle motion on auditory structures in fishes [J]. PLoS One, 2020, 15(3): e0230578. doi: 10.1371/journal.pone.0230578

    [67]

    Jones I T, Gray M D, Mooney T A. Soundscapes as heard by invertebrates and fishes: Particle motion measurements on coral reefs [J]. The Journal of the Acoustical Society of America, 2022, 152(1): 399-415. doi: 10.1121/10.0012579

    [68]

    Vedenev A I, Kochetov O Y, Lunkov A A, et al. Airborne and underwater noise produced by a hovercraft in the north caspian region: Pressure and particle motion measurements [J]. Journal of Marine Science and Engineering, 2023, 11(5): 1079. doi: 10.3390/jmse11051079

    [69] 梁君, 陈德慧, 王伟定, 等. 正弦波交替音对黑鲷音响驯化的实验研究 [J]. 海洋学研究, 2014, 32(2): 59-66.]

    Liang J, Chen D H, Wang W D, et al. Acoustic taming on Sparus macrocephalus by sine wave alternate sounds [J]. Journal of Marine Sciences, 2014, 32(2): 59-66. [

    [70] 李卫东, 白艳勤, 李阳希, 等. 鲢幼鱼对四种不同声音的回避行为 [J/OL]. 水生态学杂志. https://doi.org/10.15928/j.1674-3075.202301310022.]

    Li W D, Bai Y Q, Li Y X, et al. The avoidance behavior of juvenile silver carp Hypophthalmichthys molitrix to four different types of sounds [J/OL]. Journal of Hydroecology. https://doi.org/10.15928/j.1674-3075.202301310022. [

    [71] 何晨睿, 李晓兵, 达瓦, 等. 不同声音对草鱼幼鱼负趋音性行为反应影响研究 [J]. 渔业科学进展, 2024, 45(4): 86-96.] doi: 10.11758/yykxjz.20230316001

    He C R, Li X B, Da W, et al. The negative phonotaxic responses of juvenile grass carp Ctenopharyngodon idellus subjected to different sounds [J]. Progress in Fishery Sciences, 2024, 45(4): 86-96. [ doi: 10.11758/yykxjz.20230316001

    [72]

    Gendron G, Tremblay R, Jolivet A, et al. Anthropogenic boat noise reduces feeding success in winter flounder larvae (Pseudopleuronectes americanus) [J]. Environmental Biology of Fishes, 2020, 103(9): 1079-1090. doi: 10.1007/s10641-020-01005-3

    [73]

    Mann D A. Acoustic communication in fishes and potential effects of noise [J]. Advances in Experimental Medicine and Biology, 2016(875): 673-678.

    [74]

    Slabbekoorn H, Dalen J, de Haan D, et al. Population-level consequences of seismic surveys on fishes: An interdisciplinary challenge [J]. Fish and Fisheries, 2019, 20(4): 653-685. doi: 10.1111/faf.12367

    [75]

    Fleissner E R, Putland R L, Mensinger A F. The effect of boat sound on freshwater fish behavior in public (motorized) and wilderness (nonmotorized) lakes [J]. Environmental Biology of Fishes, 2022, 105(8): 1065-1079. doi: 10.1007/s10641-022-01318-5

    [76]

    Vetter B J, Murchy K A, Cupp A R, et al. Acoustic deterrence of bighead carp (Hypophthalmichthys nobilis) to a broadband sound stimulus [J]. Journal of Great Lakes Research, 2017, 43(1): 163-171. doi: 10.1016/j.jglr.2016.11.009

    [77]

    Vetter B J, Brey M K, Mensinger A F. Reexamining the frequency range of hearing in silver (Hypophthalmichthys molitrix) and bighead (H. nobilis) carp [J]. PLoS One, 2018, 13(3): e0192561. doi: 10.1371/journal.pone.0192561

    [78]

    Domenici P. Fish Locomotion: An Eco-Ethological Perspective [M]. Enfield N H: Science Publishers, 2010.

    [79] 杨吉, 邬玉娇, 李晓兵, 等. 草鱼敏感的负趋音筛选 [J]. 水产学报, 2024, 48(4): 366-375.]

    Yang J, Wu Y J, Li X B, et al. Screening acoustic deterrents against Ctenopharyngodon idella [J]. Journal of Fisheries of China, 2024, 48(4): 366-375. [

    [80] 王明云, 沈修俊, 任开元, 等. 摄食声对草鱼幼鱼的诱集作用 [J]. 水生生物学报, 2021, 45(1): 153-160.]

    Wang M Y, Shen X J, Ren K Y, et al. The attractive effect of feeding sound to juvenile grass carp Ctenopharyngodon idellus [J]. Acta Hydrobiologica Sinica, 2021, 45(1): 153-160. [

    [81] 李嘉欣, 李晓兵, 白艳勤, 等. 雅鲁藏布江支流湘曲湘河鱼道声驱鱼效果初探 [J]. 水产学报, 2024, 48(9): 163-174.]

    Li J X, Li X B, Bai Y Q, et al. A preliminary study on the acoustic deterrence system at Xianghe fishway in Xiang River, a tributary of the Yarlung Zangbo River [J]. Journal of Fisheries of China, 2024, 48(9): 163-174. [

    [82]

    Qin X H, Liu Y H, Shen X J, et al. Spatial avoidance of tu-fish Schizopygopsis younghusbandi for different sounds may inform behavioural deterrence strategies [J]. Fisheries Management and Ecology, 2020, 27(1): 10-19. doi: 10.1111/fme.12375

    [83] 林听听, 刘鑫, 王昌勃, 等. 船舶噪声声压级对大黄鱼幼鱼游泳、摄食行为及免疫生理指标的影响 [J]. 海洋渔业, 2020, 42(1): 61-72.] doi: 10.3969/j.issn.1004-2490.2020.01.007

    Lin T T, Liu X, Wang C B, et al. Effects of ship noise pressure level on swimming, feeding behaviors and immuno-physiological indicators of Larimichthys crocea juveniles [J]. Marine Fisheries, 2020, 42(1): 61-72. [ doi: 10.3969/j.issn.1004-2490.2020.01.007

    [84]

    Wang M Y, Wang Q F, Ni M, et al. Can feeding sound attract flower fish (Ptychobarbus kaznakovi) [J]? Journal of Comparative Physiology a-Neuroethology Sensory Neural and Behavioral Physiology, 2021, 207 (5): 617-627.

    [85]

    Liu G Y, Wu Y J, Shen X J, et al. Laboratory experiments demonstrate that the hissing of the Chinese alligator can effectively inhibit movement of flower fish Ptychobarbus kaznakovi [J]. Hydrobiologia, 2019, 836(1): 97-108. doi: 10.1007/s10750-019-3943-6

    [86]

    Currie H A L, White P R, Leighton T G, et al. Collective behaviour of the European minnow (Phoxinus phoxinus) is influenced by signals of differing acoustic complexity [J]. Behavioural Processes, 2021(189): 104416.

    [87]

    Schramm M P, Bevelhimer M, Scherelis C. Effects of hydrokinetic turbine sound on the behavior of four species of fish within an experimental mesocosm [J]. Fisheries Research, 2017(190): 1-14.

    [88]

    Wisudo S H, Susanto A, Riyanto M, et al. The behaviour and retinular response of yellowstripe scad, Selaroides leptolepis to the different colors of light emitting diode [J]. International Journal of Agriculture and Biology, 2020, 24(3): 454-460.

    [89]

    Harvey E S, Butler J J, McLean D L, et al. Contrasting habitat use of diurnal and nocturnal fish assemblages in temperate Western Australia [J]. Journal of Experimental Marine Biology and Ecology, 2012(426): 78-86.

    [90]

    Lucena M B, Mendes T C, Barbosa M C, et al. Does the colors of light matter? Testing different light color in nocturnal underwater visual censuses [J]. Marine Environmental Research, 2021(166): 105261.

    [91]

    Keep J K, Watson J R, Cramp R L, et al. Low light intensities increase avoidance behaviour of diurnal fish species: Implications for use of road culverts by fish [J]. Journal of Fish Biology, 2021, 98(3): 634-642. doi: 10.1111/jfb.14604

    [92]

    McIlvenny J, Youngson A, Williamson B J, et al. Combining acoustic tracking and hydrodynamic modelling to study migratory behaviour of Atlantic salmon (Salmo salar) smolts on entry into high-energy coastal waters [J]. ICES Journal of Marine Science, 2021, 78(7): 2409-2419. doi: 10.1093/icesjms/fsab111

    [93] 白艳勤, 陈求稳, 许勇, 等. 光驱诱技术在鱼类保护中的应用 [J]. 水生态学杂志, 2013, 34(4): 85-88.] doi: 10.3969/j.issn.1674-3075.2013.04.018

    Bai Y Q, Chen Q W, Xu Y, et al. The application of light drive and trap technique in fish species protection [J]. Journal of Hydroecology, 2013, 34(4): 85-88. [ doi: 10.3969/j.issn.1674-3075.2013.04.018

    [94] 邓青燕, 卢克祥, 钱卫国, 等. 单色光对斑马鱼趋光行为的影响 [J]. 广东海洋大学学报, 2020, 40(6): 27-34.] doi: 10.3969/j.issn.1673-9159.2020.06.004

    Deng Q Y, Lu K Y, Qian W G, et al. Effects of monochromatic light on phototaxis behavior of zebrafish (Danio rerio) [J]. Journal of Guangdong Ocean University, 2020, 40(6): 27-34. [ doi: 10.3969/j.issn.1673-9159.2020.06.004

    [95] 梁剑宁, 杨聿, 莫伟均. 花鳗鲡幼鱼光色趋向性研究[C]. 中国大坝工程学会2021学术年会论文集. 广州, 2022: 718-727.]

    Liang J N, Yang Y, Mo W J. Photochromism of Juvenile Eel Anguilla marmorata [C]. The Proceedings of the 2021 Annual Academic Conference of China National Committee on Large Dams. Guangzhou, 2022: 718-727. [

    [96]

    Xu J W, Sang W L, Dai H C, et al. A detailed analysis of the effect of different environmental factors on fish phototactic behavior: Directional fish guiding and expelling technique [J]. Animals, 2022, 12(3): 240. doi: 10.3390/ani12030240

    [97] 罗清平, 袁重桂, 阮成旭, 等. 孔雀鱼幼苗在光场中的行为反应分析 [J]. 福州大学学报(自然科学版), 2007(4): 631-634.]

    Luo Q P, Yuan C G, Ruan C X, et al. Analysis of behavioral response of guppy fry in optical field [J]. Journal of Fuzhou University (Natural Science), 2007(4): 631-634. [

    [98] 邓青燕, 卢克祥, 钱卫国, 等. 色温对斑马鱼趋光行为影响的研究 [J]. 大连海洋大学学报, 2020, 35(4): 536-543.]

    Deng Q Y, Lu K Y, Qian W G, et al. Effects of color temperature on phototaxis behavior of zebrafish Danio rerio [J]. Journal of Dalian Ocean University, 2020, 35(4): 536-543. [

    [99] 张林, 兰开勇, 宋荣群, 等. 秦岭细鳞鲑稚鱼对底质颜色、光照强度及光色的选择行为 [J]. 渔业科学进展, 2023, 44(4): 179-187.]

    Zhang L, Lan K Y, Song R Q, et al. Selective behavior of juvenile Brachymystax tsinlingensis depends on substrate color, light intensity, and light color [J]. Progress in Fishery Sciences, 2023, 44(4): 179-187. [

    [100]

    Xue T T, Li X, Lin G Z, et al. Tuning social interactions’ strength drives collective response to light intensity in schooling fish [J]. PLoS Computational Biology, 2023, 19(11): e1011636. doi: 10.1371/journal.pcbi.1011636

    [101] 王萍, 桂福坤, 吴常文, 等. 光照对眼斑拟石首鱼行为和摄食的影响 [J]. 南方水产, 2009, 5(5): 57-62.]

    Wang P, Gui F K, Wu C W, et al. Effects of illumination conditions on the distributing and feeding of Sciaemops ocelletus [J]. South China Fisheries Science, 2009, 5(5): 57-62. [

    [102] 韩建, 王茂林, 曹胜男, 等. 光色、光强和光周期对大菱鲆幼鱼生长和摄食的影响 [J]. 大连海洋大学学报, 2023, 38(5): 787-794.]

    Han J, Wang M L, Cao S N, et al. Effects of light color, light intensity and photoperiod on growth and feeding of juvenile turbot (Scophthalmus maximus) [J]. Journal of Dalian Ocean University, 2023, 38(5): 787-794. [

    [103] 张宁, 林晨宇, 许家炜, 等. 水流对草鱼幼鱼趋光行为的影响 [J]. 水生生物学报, 2019, 43(6): 1253-1261.]

    Zhang N, Lin C Y, Xu J W, et al. The effect of water flow on the phototaxis of juvenile grass carp [J]. Acta Hydrobiologica Sinica, 2019, 43(6): 1253-1261. [

    [104] 柴毅, 谢从新, 危起伟, 等. 中华鲟视网膜早期发育及趋光行为观察 [J]. 水生生物学报, 2007, 31(6): 920-922.] doi: 10.3724/issn1000-3207-2007-6-920-m

    Chai Y, Xie C X, Wei Q W, et al. Development of retina and behavior during Chinese sturgeon (Acipenser sinensis gray) early ontogeny [J]. Acta Hydrobiologica Sinica, 2007, 31(6): 920-922. [ doi: 10.3724/issn1000-3207-2007-6-920-m

    [105] 张金玉, 石小涛, 林晨宇, 等. 光环境对鲢幼鱼行为特性与上溯趋势影响 [J/OL]. 水产学报. https://link.cnki.net/urlid/31.1283.S.20240305.1510.003.]

    Zhang J Y, Shi X T, Lin C Y, et al. The impact of light environment on the behavioral characteristics and upstream swimming activeness of juvenile Hypophthalmichthys molitrix [J/OL]. Journal of Fisheries of China. https://link.cnki.net/urlid/31.1283.S.20240305.1510.003. [

    [106] 姜昊, 朱蒙恩, 潘炳坤, 等. 拉萨裸裂尻鱼对光照颜色和强度的选择 [J]. 水力发电, 2023, 49(7): 1-4+100.]

    Jiang H, Zhu M E, Pan B K, et al. The preferable light color and intensity for Schizopygopsis younghusbandi [J]. Water Power, 2023, 49(7): 1-4+100. [

    [107] 卢克祥, 许柳雄, 邓青燕. 不同光照条件对斑马鱼趋光行为的影响 [J]. 上海海洋大学学报, 2022, 31(3): 792-800.]

    Lu K Y, Xu L X, Deng Q Y. Effects of different light conditions on phototactic behavior of zebrafish [J]. Journal of Shanghai Ocean University, 2022, 31(3): 792-800. [

    [108] 黄婕, 林晨宇, 石小涛, 等. 基于齐口裂腹鱼趋光特性的涵洞式鱼道光环境优化 [J]. 生态学杂志, 2021, 40(7): 2155-2163.]

    Huang J, Lin C Y, Shi X T, et al. Light environment optimization of culvert fishway based on the phototaxis of Schizothorax prenanti [J]. Chinese Journal of Ecology, 2021, 40(7): 2155-2163. [

    [109]

    Matsuda K. How much light intensity to induce repulsion or attraction behaviour in juvenile salmon [J]? Hydrobiologia, 2024( 851 ): 2237-2248.

    [110]

    Ford M I, Elvidge C K, Baker D, et al. Preferences of age-0 white sturgeon for different colours and strobe rates of LED lights may inform behavioural guidance strategies [J]. Environmental Biology of Fishes, 2018, 101(4): 667-674. doi: 10.1007/s10641-018-0727-1

    [111] 毕瑾秋, 何衍, 王春花, 等. 不同光色环境对中华倒刺鲃幼鱼群体行为的影响 [J]. 重庆师范大学学报(自然科学版), 2024, 41(3): 37-46.]

    Bi J Q, He Y, Wang C H, et al. Effect of different light color environment on collective behavior of juvenile Qingbo (Spinibarbus sinensis) [J]. Journa1 of Chongqing Norma1 University (Natura1 Science), 2024, 41(3): 37-46. [

    [112]

    Johnson N S, Snow B, Bruning T, et al. A seasonal electric barrier blocks invasive adult sea lamprey (Petromyzon marinus) and reduces production of larvae [J]. Journal of Great Lakes Research, 2021(47): S310-S319.

    [113]

    Noatch M R, Suski C D. Non-physical barriers to deter fish movements [J]. Environmental Reviews, 2012, 20(1): 71-82. doi: 10.1139/a2012-001

    [114] 黄晓龙, 白艳勤, 崔磊, 等. 电驱鱼技术在鱼类保护中的应用 [J]. 生态学杂志, 2021, 40(10): 3364-3374.]

    Huang X L, Bai Y Q, Cui L, et al. Application of electric fish driving technology in fish protection [J]. Chinese Journal of Ecology, 2021, 40(10): 3364-3374. [

    [115]

    Parker A D, Glover D C, Finney S T, et al. Fish distribution, abundance, and behavioral interactions within a large electric dispersal barrier designed to prevent Asian carp movement [J]. Canadian Journal of Fisheries and Aquatic Sciences, 2016, 73(7): 1060-1071. doi: 10.1139/cjfas-2015-0309

    [116]

    Kim J, Mandrak N E. Effects of vertical electric barrier on the behaviour of common carp [J]. Management of Biological Invasions, 2017, 8(4): 497-505. doi: 10.3391/mbi.2017.8.4.04

    [117]

    Bajer P G, Claus A C, Wein J, et al. Field test of a low-voltage, portable electric barrier to guide invasive common carp into a mock trap during seasonal migrations [J]. Management of Biological Invasions, 2018, 9(3): 291-297. doi: 10.3391/mbi.2018.9.3.11

    [118]

    Kim J, Mandrak N E. Effects of a vertical electric barrier on the behaviour of rainbow trout [J]. Aquatic Ecosystem Health & Management, 2019, 22(2): 183-192.

    [119]

    Johnson N S, Miehls S. Guiding out-migrating juvenile sea lamprey (Petromyzon marinus) with pulsed direct current [J]. River Research and Applications, 2014, 30(9): 1146-1156. doi: 10.1002/rra.2703

    [120]

    Weber M J, Thul M D, Flammang M. Effectiveness of pulsed direct current at reducing walleye escapement from a simulated reservoir [J]. Fisheries Research, 2016(176): 15-21.

    [121] 李阳希, 侯轶群, 金瑶, 等. 不同电学参数下拦鱼电栅对3种鱼类的驱鱼效果 [J]. 生态学杂志, 2022, 41(9): 1853-1861.]

    Li Y X, Hou Y Q, Jin Y, et al. Repellency of electric barrier with different parameters on three fish species [J]. Chinese Journal of Ecology, 2022, 41(9): 1853-1861. [

    [122] 黄晓龙, 白艳勤, 姜伟, 等. 不同电极布置方式和电学参数下拦鱼电栅对鲢的阻拦效果 [J]. 生态学杂志, 2023, 42(9): 2176-2183.]

    Huang X L, Bai Y Q, Jiang W, et al. The blocking effects of electric barrier with different electrode arrangements and electrical parameters on silver carp [J]. Chinese Journal of Ecology, 2023, 42(9): 2176-2183. [

    [123] 石迅雷, 胡成, 达瓦, 等. 不同电学参数和流速下的拦鱼电栅对草鱼幼鱼的拦导效率 [J]. 水产学报, 2022, 46(2): 310-321.]

    Shi X L, Hu C, Da W, et al. Blocking efficiency of electrified barrier for guiding juvenile grass carp (Ctenopharyngodon idella) by pulsed direct current with different electric parameters at different flow velocities [J]. Journal of Fisheries of China, 2022, 46(2): 310-321. [

    [124]

    Miller M, de Bie J, Sharkh S M, et al. Behavioural response of downstream migrating European eel (Anguilla anguilla) to electric fields under static and flowing water conditions [J]. Ecological Engineering, 2021(172): 106397.

    [125]

    Bai Y Q, Huang X L, Xie L H, et al. Experimentally determined effectiveness of different electric barrier arrangements on the behavioural deterrent of silver carp (Hypophthalmichthys molitrix) [J]. Applied Animal Behaviour Science, 2024(271): 106172.

    [126]

    Layhee M J, Sepulveda A J, Shaw A, et al. Effects of electric barrier on passage and physical condition of juvenile and adult rainbow trout [J]. Journal of Fish and Wildlife Management, 2016, 7(1): 28-35. doi: 10.3996/042015-JFWM-039

    [127] 石小涛, 张政, 黄晓龙, 等. 不同电学参数和水流条件下电栅对鲤(Cyprinus carpio)的阻拦效果 [J]. 海洋与湖沼, 2024, 55(3): 546-554.] doi: 10.11693/hyhz20231000215

    Shi X T, Zhang Z, Huang X L, et al. The barrier effect of electric fence on Cyprinus carpio under different electrical parameters and flow conditions [J]. Oceanologia et Limnologia Sinica, 2024, 55(3): 546-554. [ doi: 10.11693/hyhz20231000215

    [128]

    Meister J, Moldenhauer-Roth A, Beck C, et al. Protection and guidance of downstream moving fish with electrified horizontal bar rack bypass systems [J]. Water, 2021, 13(19): 2786. doi: 10.3390/w13192786

    [129]

    Zielinski D P, Voller V R, Svendsen J C, et al. Laboratory experiments demonstrate that bubble curtains can effectively inhibit movement of common carp [J]. Ecological Engineering, 2014(67): 95-103.

    [130]

    Circiumaru G, Chihaia R-A, Voina A, et al. Experimental analysis of a fish guidance system for a river water intake [J]. Water, 2022, 14(3): 370. doi: 10.3390/w14030370

    [131] 周默, 黄六一, 尤鑫星, 等. 气泡幕对虹鳟阻拦效果研究 [J]. 水生生物学报, 2023, 47(12): 2003-2010.] doi: 10.7541/2023.2022.0403

    Zhou M, Huang L Y, You X X, et al. Obstructing effect of bubble curtain on rainbow trout (Oncorhynchus mykiss) [J]. Acta Hydrobiologica Sinica, 2023, 47(12): 2003-2010. [ doi: 10.7541/2023.2022.0403

    [132] 赵锡光, 刘理东, 何大仁. 气泡幕对黑鲷阻拦作用机制初探 [J]. 海洋与湖沼, 1998, 29(1): 35-40.] doi: 10.3321/j.issn:0029-814X.1998.01.006

    Zhao X G, Liu L D, He D R. A study on the intercepting mechanism of an air-bubble curtain on black porgy (Sparus macrocephalus) [J]. Oceanologia et Limnologia Sinica, 1998, 29(1): 35-40. [ doi: 10.3321/j.issn:0029-814X.1998.01.006

    [133]

    Thodi P, Talimi V, Liu L, et al. Jellyfish Deflection from Marine Fish Pens Using Bubbler Technology [C]. ASME 2023 42nd International Conference on Ocean, Offshore and Arctic Engineering, Melbourne, Australia. 2023.

    [134] 罗佳, 白艳勤, 林晨宇, 等. 不同流速下气泡幕和闪光对光倒刺鲃趋避行为的影响 [J]. 水生生物学报, 2015, 39(5): 1065-1068.] doi: 10.7541/2015.140

    Luo J, Bai Y Q, Lin C Y, et al. The influence of bubble curtain and strobe light to approach-avoidance behavior of Spinibarbus hollandi oshima in different flow velovity [J]. Acta Hydrobiologica Sinica, 2015, 39(5): 1065-1068. [ doi: 10.7541/2015.140

    [135]

    Zielinski D P, Sorensen P W. Bubble curtain deflection screen diverts the movement of both Asian and common carp [J]. North American Journal of Fisheries Management, 2016, 36(2): 267-276. doi: 10.1080/02755947.2015.1120834

    [136]

    Zielinski D P, Sorensen P W. Field test of a bubble curtain deterrent system for common carp [J]. Fisheries Management and Ecology, 2015, 22(2): 181-184. doi: 10.1111/fme.12108

    [137] 马丁一, 邢彬彬, 齐雨琨, 等. 气泡幕对大泷六线鱼的阻拦效果 [J]. 大连海洋大学学报, 2016, 31(3): 311-314.]

    Ma D Y, Xing B B, Qi Y K, et al. Blocking effect of bubble curtains on fat greenling Hexagrammos otakii [J]. Journal of Dalian Ocean University, 2016, 31(3): 311-314. [

    [138] 范纹彤, 刘雁, 王谦, 等. 气泡幕对异齿裂腹鱼的阻拦效果 [J]. 生态学杂志, 2019, 38(5): 1433-1437.]

    Fan W T, Liu Y, Wang Q, et al. The blocking effect of bubble curtain on Schizothorax oconnori [J]. Chinese Journal of Ecology, 2019, 38(5): 1433-1437. [

    [139] 白艳勤, 罗佳, 牛俊涛, 等. 不同密度气泡幕对花鱼骨和白甲鱼的阻拦效应 [J]. 水生态学杂志, 2013, 34(4): 63-69.]

    Bai Y Q, Luo J, Niu J T, et al. Avoidance responses of Hemibarbus maculates and Onychostoma sima to bubble curtains with different density [J]. Journal of Hydroecology, 2013, 34(4): 63-69. [

    [140] 陈勇, 张沛东, 张硕, 等. 不同密度固定气泡幕对红鳍东方鲀的阻拦效果 [J]. 大连水产学院学报, 2002, 17(3): 234-239.]

    Chen Y, Zhang P D, Zhang S, et al. The intercepting effects of bubble curtains with different density on Fugu rubiripes [J]. Journal of Dalian Fisheries University, 2002, 17(3): 234-239. [

    [141] 赵锡光, 何大仁, 刘理东. 黑鲷和青石斑鱼对气泡幕反应的比较 [J]. 青岛海洋大学学报, 1997, 27(1): 35-42.]

    Zhao X G, He D R, Liu L D. Comparison on the reactions of Sparus macrocephalus and Epinephelus awoara to a bubble curtain [J]. Journal of Ocean University of Qingdao, 1997, 27(1): 35-42. [

    [142] 尹入成, 林晨宇, 石小涛, 等. 静水与流水下气泡幕对异齿裂腹鱼的阻拦效应 [J]. 水生生物学报, 2020, 44(3): 595-602.] doi: 10.7541/2020.073

    Yin R C, Lin C Y, Shi X T, et al. Blocking effect of static water and flowing water bubble curtain on Schizothorax oconnori [J]. Acta Hydrobiologica Sinica, 2020, 44(3): 595-602. [ doi: 10.7541/2020.073

    [143]

    Dennis C E, Zielinski D P, Sorensen P W. A complex sound coupled with an air curtain blocks invasive carp passage without habituation in a laboratory flume [J]. Biological Invasions, 2019, 21(9): 2837-2855. doi: 10.1007/s10530-019-02017-6

    [144]

    Leander J, Klaminder J, Hellstrom G, et al. Bubble barriers to guide downstream migrating Atlantic salmon (Salmo salar): An evaluation using acoustic telemetry [J]. Ecological Engineering, 2021(160): 106141.

    [145]

    Lin C Y, Dai H C, Shi X T, et al. An experimental study on fish attraction using a fish barge model [J]. Fisheries Research, 2019(210): 181-188.

    [146]

    Perry R W, Romine J G, Adams N S, et al. Using a non-physical behavioural barrier to alter migration routing of juvenile chinook salmon in the Sacramento-San Joaquin River Delta [J]. River Research and Applications, 2014, 30(2): 192-203. doi: 10.1002/rra.2628

    [147]

    Dai L, Zhang Z, Liu J H, et al. A study of the effects of light, sound, and bubble curtains on the expulsion effect of Hexagrammos otakii [J]. Frontiers in Marine Science, 2024(11): 1384046.

    [148]

    Haberlin D, McAllen R, Doyle T K. Field and flume tank experiments investigating the efficacy of a bubble curtain to keep harmful jellyfish out of finfish pens [J]. Aquaculture, 2021(531): 735915.

    [149]

    Peng Y X, Laguna A J, Tsouvalas A. A multi-physics approach for modelling noise mitigation using an air-bubble curtain in impact pile driving [J]. Frontiers in Marine Science, 2023(10): 1134776.

    [150] 徐是雄, 林晨宇, 罗佳, 等. 鲢幼鱼对不同气量气泡幕的趋避行为 [J]. 水生态学杂志, 2018, 39(1): 69-75.]

    Xu S X, Lin C Y, Luo J, et al. Approach-avoidance behavior of juvenile silver carp to a bubble curtain at different gas flows [J]. Journal of Hydroecology, 2018, 39(1): 69-75. [

    [151]

    Elliott M, Hemingway K L. Fishes in Estuaries [M]. Oxford: Blackwell Science, 2002.

    [152]

    Zhang T J, Xin J, Song L M, et al. Spatial and temporal variation of biomass density beneath drifting fish-aggregating devices in the western and central Pacific Ocean [J]. Fisheries Management and Ecology, 2024, 31(5): e12711. doi: 10.1111/fme.12711

    [153]

    Galib S M, Sun J R, Gröcke D R, et al. Ecosystem effects of invasive crayfish increase with crayfish density [J]. Freshwater Biology, 2022, 67(6): 1005-1019. doi: 10.1111/fwb.13897

    [154] 衣萌萌, 于赫男, 林小涛, 等. 密度胁迫下凡纳滨对虾的行为与生理变化 [J]. 暨南大学学报(自然科学与医学版), 2012, 33(1): 81-86+110.]

    Yi M M, Yu H N, Lin X T, et al. Effects of stocking densities on behavior and physiological activity in Litopenaeus vannamei [J]. Journal of Jinan University (Natural Science), 2012, 33(1): 81-86+110. [

    [155]

    Chavanich S, Viyakarn V, Senanan W, et al. Laboratory assessment of feeding-behavior interactions between the introduced Pacific white shrimp Litopenaeus vannamei (Boone, 1931) (Penaeidae) and five native shrimps plus a crab species in Thailand [J]. Aquatic Invasions, 2016, 11(1): 67-74. doi: 10.3391/ai.2016.11.1.07

    [156] 刘飞, 张富斌, 王雪, 等. 赤水河产漂流性卵鱼类的繁殖活动及其与环境因子之间的关系 [J]. 水生生物学报, 2019, 43(S1): 77-83.] doi: 10.7541/2019.170

    Liu F, Zhang F B, Wang X, et al. Relationships between reproduction activities of fishes with drifting eggs and environmental factors in the Chishui River [J]. Acta Hydrobiologica Sinica, 2019, 43(S1): 77-83. [ doi: 10.7541/2019.170

    [157]

    Balaban-Feld J, Mitchell W A, Kotler B P, et al. State-dependent foraging among social fish in a risky environment [J]. Oecologia, 2019, 190(1): 37-45. doi: 10.1007/s00442-019-04395-z

    [158] 覃英莲, 柏杨, 彭姜岚, 等. 高体鳑鲏幼鱼集群行为研究 [J]. 水生态学杂志, 2017, 38(4): 71-76.]

    Qin Y L, Bai Y, Peng J L, et al. Schooling behavior of juvenile rose bitterling (Rhodeus ocellatus) [J]. Journal of Hydroecology, 2017, 38(4): 71-76. [

    [159] 石小涛, 石尚上, 罗佳, 等. 集群对草鱼、鲢幼鱼克流上溯行为的影响 [J]. 渔业科学进展, 2024, 45(1): 33-46.]

    Shi X T, Shi S S, Luo J, et al. Effect of schooling behavior on upstream migration of juvenile grass carp and silver carp [J]. Progress in Fishery Sciences, 2024, 45(1): 33-46. [

    [160]

    Foster W A, Treherne J E. Evidence for the dilution effect in the selfish herd from fish predation on a marine insect [J]. Nature, 1981, 293(5832): 466-467. doi: 10.1038/293466a0

    [161] 赵涵婧, 韩建蓉, 金渝钦, 等. 群体大小对鳙幼鱼的集群行为影响 [J]. 中国农学通报, 2022, 38(23): 143-149.] doi: 10.11924/j.issn.1000-6850.casb2021-0732

    Zhao H J, Han J R, Jin Y Q, et al. Effects of population size on the collective behavior of juvenile bighead carp [J]. Chinese Agricultural Science Bulletin, 2022, 38(23): 143-149. [ doi: 10.11924/j.issn.1000-6850.casb2021-0732

    [162] 凌鸿, 王春花, 付世建, 等. 营养状态和代谢范围对锦鲫幼鱼群体行为的影响 [J]. 水生生物学报, 2023, 47(6): 958-972.] doi: 10.7541/2023.2022.0339

    Ling H, Wang C H, Fu S J, et al. Nutritional status and aerobic scope on group behaviour of juvenile goldfish (Carassius auratus) [J]. Acta Hydrobiologica Sinica, 2023, 47(6): 958-972. [ doi: 10.7541/2023.2022.0339

    [163] 尹入成. 不同规格气泡幕对鱼类趋避行为影响机制及其工程应用设计 [D]. 三峡大学, 2020.]

    Yin R C. The influence mechanism of bubble curtain of different specifications on the approach-avoidance behavior of fishes and its engineering application design [D]. Yichang: China Three Gorges University, 2020. [

    [164]

    Iliff A J, Wang C, Ronan E A, et al. The nematode C. elegans senses airborne sound [J]. Neuron, 2021, 109(22): 3633. doi: 10.1016/j.neuron.2021.08.035

    [165]

    Caputi A A, Nogueira J. Identifying self- and nonself-generated signals: Lessons from electrosensory systems [Z]. New York: Springer, 2012.

    [166]

    Ricci V, Ronco F, Musilova Z, et al. Molecular evolution and depth-related adaptations of rhodopsin in the adaptive radiation of cichlid fishes in Lake Tanganyika [J]. Molecular Ecology, 2022, 31(10): 2882-2897. doi: 10.1111/mec.16429

    [167]

    Elliott C W, Ridgway M S, Blanchfield P J, et al. Novel insights gained from tagging walleye (Sander vitreus) with pop-off data storage tags and acoustic transmitters in Lake Ontario [J]. Journal of Great Lakes Research, 2023, 49(2): 515-530. doi: 10.1016/j.jglr.2023.01.011

  • 期刊类型引用(4)

    1. 金禹成,王晓玲,秦瑜,肖满义,周禹廷,祝贵兵. 拒马河沉积物N_2O产生潜势、途径与微生物群落结构的研究. 环境科学学报. 2024(08): 311-322 . 百度学术
    2. 李君轶,吴金明,杜浩,张辉,邵俭,危起伟. 嘉陵江源鱼类群落结构特征与环境因子的关系. 淡水渔业. 2024(05): 24-32 . 百度学术
    3. 康玲玲,马超,孙光,盛祥锐,韩静,罗遵兰. 潮白河怀柔段鱼类多样性特征及水生态系统健康评价. 环境科学研究. 2024(10): 2214-2224 . 百度学术
    4. 杨姣姣,陈冬,黄立成,李杨,董晋延,黄超,王纯波,刘永定,杜劲松,潘珉. 滇池不同湖区浮游动物群落稳定性及其驱动因子分析. 湖泊科学. 2023(05): 1752-1766 . 百度学术

    其他类型引用(4)

图(6)  /  表(5)
计量
  • 文章访问数:  134
  • HTML全文浏览量:  29
  • PDF下载量:  45
  • 被引次数: 8
出版历程
  • 收稿日期:  2024-10-22
  • 修回日期:  2024-12-26
  • 网络出版日期:  2025-01-01
  • 刊出日期:  2025-01-14

目录

/

返回文章
返回